BackgroundLocal or distant metastasis remains the main course of death in head and neck squamous cell carcinoma (HNSCC) patients. MicroRNAs (miRNAs) have been implicated in metastasis of HNSCC, but the mechanisms of their action are mainly undocumented. Through public head and neck cancer miRNA expression datasets, we found that miR-876-5p was a novel potential tumor suppressor targeting HNSCC metastasis.MethodsClinical significance and mechanism of miR-876-5P was systematically analyzed in HNSCC. Quantitative RT-PCR was used to evaluate miR-876-5p levels in HNSCC cell lines and in 20 pairs of HNSCC with associated regional nodal metastases and HNSCC without metastatic primary tumors. Scratch and invasion assays were evaluated to determine the role of miR-876-5p in the regulation of HNSCC cell migration and invasion, respectively. Western blotting was used to investigate the mechanism by which miR-876-5p suppresses HNSCC cell invasion and migration. Luciferase assays were performed to assess miR-876-5p binding to the vimentin gene. The animal model was used to support the in vitro experimental findings.ResultsMiR-876-5p mimics inhibited HNSCC cell migration and invasion. Vimentin protein and mRNA levels were decreased in the miR-876-5p mimics group but increased in the miR-876-5p inhibitors group, which demonstrated that miR-876-5p inhibits vimentin expression in HNSCC cells. By directly targeting the vimentin 3′-UTR, we used dual-luciferase reporter assays to verify that vimentin is a functional downstream target of miR-876-5p. Importantly, increased vimentin expression promoted cell migration and invasion, and co-transfection with miR-876-5p mimics and vimentin restored cell aggressiveness to the original level. Moreover, miR-876-5p overexpression significantly downregulated vimentin expression level and inhibited the distal metastasis of HNSCC cells in vivo.ConclusionsmiR-876-5p, which functions as a tumor suppressor in HNSCC, inhibits metastasis by targeting vimentin and provides a novel therapeutic target for HNSCC treatment.Electronic supplementary materialThe online version of this article (10.1186/s12935-018-0619-7) contains supplementary material, which is available to authorized users.
Notch1 signaling is essential for tissue development and tumor progression. This signaling pathway has also been implicated in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC). However, the role of Notch1 expression in OL and its malignant transformation is unknown. This study aimed to examine the Notch1 expression patterns by immunohistochemistry (IHC) in a cohort of 78 Chinese patients with OL and to analyze the relationship between the patterns and progression of OL to OSCC. Strong Notch1 staining was observed in 10 (13%) of the 78 OL patients, but it was not associated with any of the clinicopathological parameters. However, we observed membranous Notch1 expression in 24 (31%) of the OL samples. Membranous Notch1 expression was significantly associated with the severity of dysplasia (P<0.001) and development of OSCC (P=0.003). By multivariate analysis, membranous Notch1 expression was found to be the only independent factor for OSCC development in the patient population (P=0.019). Among the 24 patients with membranous Notch1 expression, 11 (46%) developed OSCC compared to 8 (15%) of the 54 patients without such expression (P=0.001, determined by log-rank test). Furthermore, we established a 4-nitroquinoline-1-oxide (4NQO)-induced murine OSCC model and studied the Notch1 expression patterns in different stages of carcinogenesis. We observed that the extent of expression of membranous Notch1 increased during carcinogenesis. These data indicated a relationship between membranous Notch1 expression and OSCC risk in patients with OL and suggested that membranous Notch1 served as a biomarker for assessing OSCC risk.
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1 WT ) or mutant Notch1 vectors (Notch1 V1754L ) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γsecretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)-phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, J Cell Physiol. 2019;234:5940-5952. wileyonlinelibrary.com/journal/jcp 5940 |
These results suggested that concomitant inhibition of the Notch1 and EGFR pathways represented a rational strategy for promoting apoptosis in HNSCC and overcoming treatment resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.