The Dongying Depression (Bohai Bay Basin, eastern China) was widely filled with evaporite (anhydrite and halite) layers during the Paleogene period, especially the middle of the fourth member of the Shahejie Formation (Es4). Most evaporite layers are interbedded with mudstone strata. The strata of Es4 are divided into three sections, referred to as the upper layers, evaporite layers, and lower layers, respectively. The analysis of elemental concentrations, elemental ratios, and Pr/Ph suggests that the lower layers were deposited in an intermittent saline lake environment within a relatively dry climate. The evaporite layers were formed in a highly saline lake environment, whereas the upper layers were formed in a brackish-saline to fresh-water environment. Organic matter (OM) abundance indices, including total organic carbon (TOC), chloroform extracts, total hydrocarbon content (HC), hydrocarbon generation potential (S1 + S2), and OM type, show that the source rock potential for petroleum generation in the upper layers is best, that in the evaporite layers is fair, and in the lower layers it is poor. Carbon isotopes (δ13C) of hydrocarbons in the evaporite and lower layers were heavier than those in the upper layers. Thermal maturity parameters show that the thermal evolution process of OM in the upper layers was faster where evaporite were present compared with evaporite-free areas, while the thermal evolution of OM in the lower layers was slower in these regions. The high thermal conductivity of evaporites may have accelerated the thermal evolution of source rocks in upper layers and allowed hydrocarbon generation at a shallower burial depth. This resulted in the earlier appearance of the petroleum generation window compared to in evaporite-free areas. Meanwhile, the thermal evolution of OM in the lower layers was restrained, and consequently the hydrocarbon generation window was widened, which implies the potential for petroleum exploration in deep strata under the evaporite sequence. This is a common phenomenon in evaporite-bearing basins, according to previous and present studies.
China has recently faced significant difficulties in the exploitation of its shale oil and gas resources. An essential geological obstacle preventing the breakthrough of Chinese shale oil exploration is the precise identification of productive oil and gas pools and ideal formation. Therefore, it is crucial to examine the properties of shale reservoirs. Deep-water fine-grained sedimentary rocks in the lower member of the Well FY1 in Dongying Sag are analyzed using the Milankovitch cycle based on core, geochemical analysis, and gamma logging data. The findings demonstrate that: (1) The entire Milankovitch cycle is preserved in the Es3x of Well FY1 in Dongying Sag, and that the long Eccentricity of 405 ka and the Precession cycle of 23.2 ka are the key controlling factors in the deposition. (2) The “three-end-member” method is used to divide eight different types of lithofacies. The main vertical changes in these lithofacies are from organic massive gray mudstone to organic lamellar callitic mudstone to organic massive gray mudstone to organic lamellar gray mudstone to organic lamellar gray mudstone and back again. From shallow to deep to deeper, the entire water depth fluctuated. (3) Each of the four lengthy Eccentricity cycles has a half-cycle of warm, humid weather and cold, dry weather. Analysis was done on how the lithofacies and organic matter concentration changed with high and small eccentricities. The enrichment of biological materials in warm, wet, dry, and cold climates was hypothesized by examining the response of fine-grain sedimentary rocks to eccentricities and Precession periods. Larger Eccentricity is thought to be more suitable for storing shale oil.
Deep-seated oil and gas have become the focus of hydrocarbon exploration at home and abroad. Strengthening the research on the deep-seated hydrocarbon accumulation is the key to efficient exploration of oil and gas. Based on the analysis of light component and organic matter types of crude oil, the results show that there are two sets of source rocks in the E2s42 sub-member in Yanjia area, which are self-derived reservoirs. The reservoir types of the deep-seated glutenite in E2s4 member are mainly lithologic and lithologic-tectonic reservoirs. The distribution sequence is characterized by oil reservoirs in the high part of the structure, oil cracking gas reservoirs in the deep part, and condensate oil and gas reservoirs in the middle part. Further analysis shows that there are three layer pressure zones: overpressure zones (PCOE >1.4), the pressure transition zone (1.1 <PCOE<1.4) and the normal pressure zone (0.9 <PCOE<1.1), and the part near the upper fan area is dominated by the crude oil from the E2s42 sub-member, the middle fan area is dominated by the mixed source oil, and the lower fan area is dominated by the crude oil from the E2s41 sub-member. Compared with the characteristics of hydrocarbon migration and accumulation in middle and shallow strata, hydrocarbon accumulation in deep-seated glutenite is more controlled by hydrocarbon migration power and reservoir physical property. The secondary pore development zones are the key reservoir spaces for hydrocarbon in deep layer. On the basis of the above analyses, the hydrocarbon accumulation model of “source-reservoir-pressure” is constructed, which further reveals the hydrocarbon differential enrichment law of deep-seated glutenite, and guides the efficient exploration of oil and gas in Yanjia area, Dongying Sag.
The pore structure and connectivity in petroleum reservoirs are controlled in part by their petrological properties. Mixed siliciclastic-carbonate rocks have complex compositions and heterogeneous spatial distributions of the various minerals. As a result, the study of the pore structure and connectivity of mixed siliciclastic-carbonate tight reservoirs has been limited. In this study, methods such as thin section microscopy, X-ray diffraction, X-ray computed tomography, low pressure N2 adsorption, and spontaneous imbibition were adopted to comprehensively analyze the petrological properties, pore structure, and connectivity of the mixed siliciclastic-carbonate tight reservoirs in the upper member of the Xiaganchaigou Formation in the Yingxi Area, Qaidam Basin. The results showed that micrometer-sized pores in mixed siliciclastic-carbonate tight reservoirs are mainly dissolution pores, and that the spatial distribution of the pores is highly heterogeneous. The average pore radius range, average throat radius range, and average coordination number range of micronmeter-sized pores are 2.09~3.42 μm, 1.32~2.19 μm, and 0.48~1.49, respectively. Restricted by the concentrated distribution of local anhydrite, the connectivity of micronmeter-sized pores develops well only in the anhydrite, showing negligible contribution to the overall reservoir connectivity. In contrast, nanometer-sized pores in the mixed siliciclastic-carbonate tight reservoirs are mainly intercrystalline pores in dolomite. The range of nanometer-sized pores diameters is mainly distributed in 1.73-31.47 nm. The pores have a smooth surface, simple structure, and relatively homogeneous spatial distribution. The dissolution of dolomite intercrystalline pores by acidic fluids increases the connectivity of the nanometer-sized pores. This paper presents genetic models for microscopic pore structures and connectivity of mixed siliciclastic-carbonate rocks, making possible the evaluation on the quality of the mixed siliciclastic-carbonate tight reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.