The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light-dark cycle to the central oscillator.
Phytochrome A is the primary photoreceptor for mediating various far-red light-induced responses in higher plants. We recently showed that Arabidopsis (Arabidopsis thaliana) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), a pair of homologous proteins sharing significant sequence homology to Mutator-like transposases, act as novel transcription factors essential for activating the expression of FHY1 and FHL (for FHY1-like), whose products are required for light-induced phytochrome A nuclear accumulation and subsequent light responses. FHY3, FAR1, and Mutator-like transposases also share a similar domain structure, including an N-terminal C2H2 zinc finger domain, a central putative core transposase domain, and a C-terminal SWIM motif (named after SWI2/SNF and MuDR transposases). In this study, we performed a promoter-swapping analysis of FHY3 and FAR1. Our results suggest that the partially overlapping functions of FHY3 and FAR1 entail divergence of their promoter activities and protein subfunctionalization. To gain a better understanding of the molecular mode of FHY3 function, we performed a structure-function analysis, using site-directed mutagenesis and transgenic approaches. We show that the conserved N-terminal C2H2 zinc finger domain is essential for direct DNA binding and biological function of FHY3 in mediating light signaling, whereas the central core transposase domain and C-terminal SWIM domain are essential for the transcriptional regulatory activity of FHY3 and its homodimerization or heterodimerization with FAR1. Furthermore, the ability to form homodimers or heterodimers largely correlates with the transcriptional regulatory activity of FHY3 in plant cells. Together, our results reveal discrete roles of the multiple domains of FHY3 and provide functional support for the proposition that FHY3 and FAR1 represent transcription factors derived from a Mutator-like transposase(s).
BackgroundmicroRNAs (miRNAs) are endogenous small (~21 nucleotide) single-stranded non-coding RNAs that typically function by guiding cleavage of target genes. To find the miRNAs that may be involved in dark-induced leaf senescence, we identified miRNAs by microarray platform using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs).ResultsWe found that the expressions of 137 miRNAs (P < 0.01, signal intensity >0) were significantly changed both in DP and IDL leaves. Among them, the expression levels of 44 miRNAs were relative higher than others (P < 0.01, signal intensity >500). Of these differentially expressed miRNAs, 6 miRNAs (miR319a, 319c, miR159, miR164a, miR164c and miR390a) have been previously reported to be involved in dark-induced leaf senescence, and the remaining 38 miRNAs have not been implicated in leaf senescence before. Target genes of all 44 miRNAs were predicted, and some of them, such as NAC1, At3g28690, At2g17640 and At2g45160, were found in the Leaf Senescence Database (LSD). GO and KEGG analysis of 137 miRNAs showed that the predicted target genes were significantly enriched in transcription regulation, development-related biological processes and metabolic pathways. Expression levels of some of the corresponding miRNA targets (At1g73440, At2g03220 and At5g54810) were analysed and found to be significantly different in DP/IDL than that in WT.ConclusionsA microarray analysis about dark-induced miRNAs involved in leaf senescence are present here. Further expression analysis revealed that some new founding miRNAs maybe regulate leaf senescence in Arabidopsis, and the findings highlight the important role of miRNAs in dark-induced leaf senescence.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0656-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.