Background and objectivesAccurate identification and evaluation of the parathyroid glands (PGs) intraoperatively is critical to reduce the incidence of postoperative hypoparathyroidism after total thyroidectomy. Near-infrared fluorescence imaging (NIFI), including the autofluorescence (AF) and indocyanine green fluorescence (ICGF) imaging, is a promising technique to protect PGs. This study aimed to assess whether the combined use of AF and ICGF could reduce the incidence of postoperative hypoparathyroidism and improve the identification and evaluation of PGs during total thyroidectomy.MethodsThis randomized controlled trial enrolled 180 patients who were randomized into two groups and underwent total thyroidectomy with unilateral or bilateral central lymph node dissection. In the control group, the PGs were identified and evaluated by the naked eye. In the NIFI group, AF was used to identify the PGs and ICGF was applied to assess the blood perfusion of the PGs in situ. The primary outcome was the incidence of postoperative hypoparathyroidism. The secondary outcomes included the number of identified PGs, autotransplanted PGs, and known preserved PGs in situ.ResultsThe incidence of postoperative transient hypoparathyroidism was significantly lower in the NIFI group than in the control group (27.8% vs. 43.3%, P = 0.029). More PGs were identified in the NIFI group than in the control group (3.6 ± 0.5 vs. 3.2 ± 0.4, P < 0.001). No significant difference was observed in the number of autotransplanted PGs between the two groups (P = 0.134). Compared with the control group, a greater number of known PGs were preserved in situ in the NIFI group (1.3 ± 0.6 vs. 1.0 ± 0.5, P < 0.001). In the NIFI group, only 4.5% of the patients with at least one well-perfused PG (ICG score of 2) developed postoperative hypoparathyroidism, which was significantly lower than that of the control group (34.6%, P < 0.001).ConclusionCombined use of AF and ICGF during total thyroidectomy reduces the risk of transient postoperative hypoparathyroidism, enhances the ability to identify and preserve PGs, and improves the accuracy of evaluating the perfusion of PGs during surgery.Clinical Trial RegistrationChinese Clinical Trial Register (www.chictr.org.cn), identifier ChiCTR2100045320. Registered on April 12, 2021.
Previous researches on the association between proton pump inhibitors (PPIs) use and the treatment and prevention of COVID-19 has generated inconsistent findings.Therefore, this meta-analysis was conducted to clarify the outcome in patients who take PPIs.Eight articles with more than 268,683 subjects were included. PPI use was not associated with increased or decreased risk of COVID-19 infection (OR:3.16, 95%CI = 0.74-13.43, P=0.12) or mortality risk of COVID-19 patients (OR=1.91, 95% CI=0.86-4.24, P=0.11). While it can add risk of severe disease (OR=1.54, 95% CI=1.20-1.99, P<0.001;) and secondary infection (OR=4.33, 95% CI=2.57-7.29).In summary, PPI use is not associated with an increased risk of infection and may not change the mortality risk of COVID-19, but appeared to be associated with an increased risk of progression to severe disease and secondary infection. However, more original studies to further clarify the relationship between PPI and COVID-19 are still urgently needed.
BackgroundPrevious researches on the association between proton pump inhibitors (PPIs) use and the treatment and prevention of COVID-19 have generated inconsistent findings. Therefore, this Meta-analysis was conducted to clarify the outcome in patients who take PPIs.MethodsWe carried out a systematic search to identify potential studies until November 2020. Heterogeneity was assessed using the I-squared statistic. Odds ratios (ORs) with its 95% confidence intervals (CIs) were calculated by fixed-effects or random-effects models according to the heterogeneity. Sensitivity analyses and tests for publication bias were also performed.ResultsEight articles with more than 268,683 subjects were included. PPI use was not associated with increased or decreased risk of COVID-19 infection (OR:3.16, 95%CI = 0.74-13.43, P=0.12) or mortality risk of COVID-19 patients (OR=1.91, 95% CI=0.86-4.24, P=0.11). While it can add risk of severe disease (OR=1.54, 95% CI=1.20-1.99, P<0.001;) and secondary infection (OR=4.33, 95% CI=2.57-7.29). No publication bias was detected.ConclusionsPPI use is not associated with increased risk infection and may not change the mortality risk of COVID-19, but appeared to be associated with increased risk of progression to severe disease and secondary infection. However, more original studies to further clarify the relationship between PPI and COVID-19 are still urgently needed.
Fatty acid metabolism has attracted extensive attention for its key role in the occurrence and development of tumors. Fatty acids not only participate in the biosynthesis of phospholipids in the membrane to overcome the demand for rapidly proliferating membrane lipids but also provide ATP, signaling molecules, and NADPH through β-oxidation to maintain tumor survival and growth. However, the specific role of fatty acid β-oxidation in tumors and the description of multiple potential targets in this process are not comprehensive and systematic. Therefore, this review summarizes the function of fatty acid β-oxidation in tumors and studies of key enzymes that catalyze related reactions in various stages to improve the overall understanding of fatty acid β-oxidation and search for novel tumor treatment strategies and ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.