Adsorption is a low-energy, economical, and efficient method for pollutant removal from water. Because of their unique structure, large specific surface area (SSA), and non-toxicity, bismuth-based semiconductors, usually researched for the photodegradation of organic molecules, are also excellent for dark adsorption processes. Here, a three-dimensional adsorbent with a heterostructure with a hydrangea-like shape made of Bi2MoO6 (BMO) and BiOI (BOI) was synthesized by a one-pot solvothermal process and investigated for the adsorption of toxic dyes. BOI/BMO with an I-to-Mo ratio of 2.0 adsorbed 98.9% of the model pollutant rhodamine B (RhB) within 5 min with a maximum adsorption capacity of 72.72 mg/g in the dark at room temperature. When compared to pure BMO, the BOI2/BMO heterostructure was 14.1 times more performant because of its flower-like morphology with multiple planes, an SSA that was 1.6-fold larger, increased porosity, the formation of heterojunctions, and a negative surface charge attracting RhB. Further investigation indicated that adsorption by BOI2/BMO fitted the pseudo-second-order kinetic and the Langmuir isotherm models. In addition, the thermodynamic analysis showed that it was a spontaneous exothermic process probably relying on physisorption. Thus, the BOI/BMO adsorbent developed here is promising for the fast removal of toxic dyes from industrial wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.