Zn2GeO4 nanorod/graphene composites (ZGCs) were yielded by a two-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod. The surface of the Zn2GeO4 nanorod was compactly covered and anchored by graphene sheets. The ZGCs were then utilized as anodes for lithium ion batteries (LIBs). Intriguingly, partially crystalline ZGC containing 10.2 wt % graphene possessed excellent electrochemical performance, namely, high reversible capacity (1020 mA h g(-1) in the first cycle), favorable cyclic performance (768 mA h g(-1) after 50 cycles), and commendable rate capability (780 mA h g(-1) at the current density of 0.8A g(-1)). The amorphous region in partially crystalline Zn2GeO4 nanorods and the elastic graphene sheets provided the accommodation of volume change during the charge and discharge processes. These advantageous attributes make ZGCs the potential anode materials for LIBs.
Volatility is an inherent fragrance attribute and typically implies a reduced perception over time. One possibility to elongate odor perception is utilizing controlled fragrance-delivery systems. Herein, the Y type of faujasite with different extraframework cations (abbreviated as ZY, where Z represents Na + , Ca 2+ , or La 3+ ) was examined as potential carriers for fragrance entrapment and delivery. D-Limonene (Lim) and linalool (Lol) as model fragrances were loaded in the pore space of Y zeolites, yielding composites FG@ZY (FG = Lim, Lol). It was found that the fragrance release profiles correlate highly with the cationic species located in the nonframework. The retention of fragrances in matrices increases in the order NaY < CaY < LaY for either limonene or linalool. Interestingly, the release rate of limonene was significantly slower than that of linalool when encapsulated in the same zeolite, although neat limonene has a much higher saturated vapor pressure than linalool. For instance, the total fraction of aroma released from Lim@LaY over 30 days was about 10%, while the value was ∼20% for Lol@LaY. Based on the density functional theory calculations, the above results could be well rationalized by the electrostatic attraction and shape selectivity of microporous matrices to the dopant molecules.
Multiferroic ErMn 2 O 5 nanorods have been synthesized via a surfactant-templated hydrothermal route.An environmentally friendly natural surfactant (Arabic gum) has been utilized as a template to prepare ErMn 2 O 5 nanorods with a controllable morphology and size (i.e., nanorods with various lengths and basically invariable diameter). ErMn 2 O 5 nanorods show strong size-dependent magnetic properties that correlate with: (a) a critical length for magnetization, and (b) recognizable divagation between FC and ZFC curves at low temperature. The former could be ascribed to the competition between surface strain and uncompensated spin at the surface, and the latter to Er antiferromagnetic ordering. Fig. 5 (a) Temperature dependent magnetization of ErMn 2 O 5 nanorods at different lengths, showing zero field cooling (ZFC) and field cooling (FC) curves at magnetic field, H = 500 Oe. (b)-(d) Expanded plots of ZFC and FC curves of ErMn 2 O 5 nanorods with an L of 175 nm, 68 nm, and 25 nm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.