Stroke is a leading cause of death and disability worldwide, and approximately 87% of cases are attributed to ischemia. The main factors that cause ischemic stroke include excitotoxicity, energy metabolism disorder, Ca+ overload, oxidative damage, apoptosis, autophagy, and inflammation. However, no effective drug is currently available for the comprehensive treatment of ischemic stroke in clinical applications; thus, there is an urgent need to find and develop comprehensive and effective drugs to treat postischemic stroke. Traditional Chinese medicine (TCM) has unique advantages in treating ischemic stroke, with overall regulatory effects at multiple levels and on multiple targets. Many researchers have studied the effective components of TCMs and have achieved undeniable results. This paper reviews studies on the anticerebral ischemia effects of TCM monomers such as tetramethylpyrazine (TMP), dl-3-n-butylphthalide (NBP), ginsenoside Rg1 (Rg1), tanshinone IIA (TSA), gastrodin (Gas), and baicalin (BA) as well as effective extracts such as Ginkgo biloba extract (EGB). Research on the anticerebral ischemia effects of TCMs has focused mostly on their antioxidative stress, antiapoptotic, anti-inflammatory, proangiogenic, and proneurogenic effects. However, the research on the use of TCM to treat ischemic stroke remains incompletely characterized. Thus, we summarized and considered this topic from the perspective of pharmacokinetics, pharmacological effects, and mechanistic research, and we have provided a reference basis for future research and development on anticerebral ischemia TCM drugs.
Notoginsenoside R1 (R1), a major component isolated from P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in a rat model of ischemic stroke. However, its long-term effects on neurogenesis and neurological restoration after ischemic stroke have not been investigated. The aim of this study was to evaluate the effects of R1 on neurogenesis and long-term functional recovery after ischemic stroke. We used male Sprague-Dawley rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). R1 was administered by intraperitoneal (i.p.) injection immediately postischemia. We showed that R1 significantly decreased infarct volume and neuronal loss, restored neurological function, and stimulated neurogenesis and oligodendrogenesis in rats subjected to MCAO/R. More importantly, R1 promoted neuronal proliferation in PC12 cells in vitro. The proneurogenic effects of R1 were associated with the activation of Akt/cAMP responsive element-binding protein, as shown by the R1-induced increase in brain-derived neurotrophic factor (BDNF) expression, and with the activation of neurological function, which was partially eliminated by selective inhibitors of BDNF and PI3K. We demonstrated that R1 is a promising compound that exerts neuroprotective and proneurogenic effects, possibly via the activation of BDNF/Akt/CREB signaling. These findings offer insight into exploring new mechanisms in long-term functional recovery after R1 treatment of ischemic stroke.
Enhanced angiography based on magnetic resonance imaging (MRI) has emerged as a noninvasive, robust, and high-resolution imaging technique for the clinical evaluation of vascular diseases. However, the effects of clinical Gd-chelating contrast agents are unsatisfactory for MRI contrast enhancement owing to their short blood half-life caused by rapid vascular extravasation, especially in microvessels. To address these issues, nanoprobes based on red blood cell membrane-coated ultrasmall NaGdF4 nanoparticles that exhibit much higher longitudinal molar relaxivity (r 1) than the clinically used contrast agent gadolinium diethylenetriaminepentaacetic acid have been developed. Furthermore, the appropriate hydrodynamic diameter and stealth nature aid the nanoprobes to reside longer within the blood vessels without extravasation, thereby increasing the contrast between the blood vessels and surrounding tissues. Through probe-enhanced three-dimensional (3D) dynamic contrast-enhanced MR angiography, the main arteries and veins of the mouse were readily discernible, and even tiny vessels with sub-millimeter diameters could be clearly depicted. With this level of outstanding MR angiography performance, the embolization and recanalization processes of the carotid artery can be serially monitored with high imaging resolution using only a single injection. Additionally, the results of clearance studies and the toxicity tests further highlight the safety features of the nanoprobe. To summarize, the nanoprobes used in this study exhibit less extravascular leakage and a longer blood half-life, thus successfully overcoming the defects of the conventional low-molecular-weight Gd-based contrast agents and demonstrating their potential usefulness in enhanced MR angiography.
ContextHyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage.ObjectiveThe present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism.Materials and methodsSprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR.ResultsThis study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway.ConclusionHFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.