Groundwater and artificial reservoirs are in a continuous dynamic interaction that can affect not only water quantity but the quality. In this paper, taking the DR (Doumen Reservoir) as an example, the level dynamic changes between the DRTS (Doumen Reservoir Test Section) and groundwater were discussed, and the water quality used by SFE (single-factor evaluation) and WQI (water quality index) method were analyzed. A coupling model is presented to quantify the leakage impact range and groundwater budget and regionalize the impact of surface water on regional groundwater quality. The results show that the level dynamics of the reservoir and groundwater are highly consistent, with a cross-correlation coefficient of 0.85 and a lag time of about 7 days. The reservoir recharges the groundwater with an increase-decrease-stationary wave dynamic potential. After 3 years of operation of the DR, the groundwater still is recharged, the groundwater level will rise obviously, with a maximum of 8.5 m. The amount of surface water recharged is always 0. NH3-N, and COD will have varying degrees of impact, both of which are mainly the pollution halo around North Lake. The results can provide support for water resources management and environmental protection of urban plain reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.