Understanding how linguistic structure is encoded in contextualized embedding could help explain their impressive performance across NLP. Existing approaches for probing them usually call for training classifiers and use the accuracy, mutual information, or complexity as a proxy for the representation's goodness. In this work, we argue that doing so can be unreliable because different representations may need different classifiers. We develop a heuristic, DIRECTPROBE, that directly studies the geometry of a representation by building upon the notion of a version space for a task. Experiments with several linguistic tasks and contextualized embeddings show that, even without training classifiers, DIRECTPROBE can shine light into how an embedding space represents labels, and also anticipate classifier performance for the representation.
Given the prevalence of pre-trained contextualized representations in today's NLP, there have been many efforts to understand what information they contain, and why they seem to be universally successful. The most common approach to use these representations involves fine-tuning them for an end task. Yet, how fine-tuning changes the underlying embedding space is less studied. In this work, we study the English BERT family and use two probing techniques to analyze how fine-tuning changes the space. We hypothesize that fine-tuning affects classification performance by increasing the distances between examples associated with different labels. We confirm this hypothesis with carefully designed experiments on five different NLP tasks. Via these experiments, we also discover an exception to the prevailing wisdom that "fine-tuning always improves performance". Finally, by comparing the representations before and after fine-tuning, we discover that fine-tuning does not introduce arbitrary changes to representations; instead, it adjusts the representations to downstream tasks while largely preserving the original spatial structure of the data points.
The assembly of colloidal particles at liquid/liquid or air/liquid interfaces is a versatile procedure to create microstructured monolayers and study their behavior under compression. When combined with soft and deformable...
We present a method for exploring regions around individual points in a contextualized vector space (particularly, BERT space), as a way to investigate how these regions correspond to word senses. By inducing a contextualized "pseudoword" as a stand-in for a static embedding in the input layer, and then performing masked prediction of a word in the sentence, we are able to investigate the geometry of the BERT-space in a controlled manner around individual instances. Using our method on a set of carefully constructed sentences targeting ambiguous English words, we find substantial regularity in the contextualized space, with regions that correspond to distinct word senses; but between these regions there are occasionally "sense voids"-regions that do not correspond to any intelligible sense. 1
One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex structures, which hinders their adoption. Learning to actively-learn (LTAL) is a recent paradigm for reducing the amount of labeled data by learning a policy that selects which samples should be labeled. In this work, we examine LTAL for learning semantic representations, such as QA-SRL. We show that even an oracle policy that is allowed to pick examples that maximize performance on the test set (and constitutes an upper bound on the potential of LTAL), does not substantially improve performance compared to a random policy. We investigate factors that could explain this finding and show that a distinguishing characteristic of successful applications of LTAL is the interaction between optimization and the oracle policy selection process. In successful applications of LTAL, the examples selected by the oracle policy do not substantially depend on the optimization procedure, while in our setup the stochastic nature of optimization strongly affects the examples selected by the oracle. We conclude that the current applicability of LTAL for improving data efficiency in learning semantic meaning representations is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.