In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.
RESEARCH ARTICLE SUMMARY INTRODUCTION: Loss-of-function mutations in one gene copy can lead to reduced amounts of protein and, consequently, human disease, a condition termed haploinsufficiency. It is currently estimated that more than 660 genes cause human disease as a result of haploinsufficiency. The delivery of extra copies of the gene by way of gene therapy is a promising therapeutic strategy to increase genedosage in such conditions.Recombinant adeno-associated virus (rAAV) provides a promising tool for delivery of transgenes in an efficient and safe way for gene therapy. However, it has some limitations, including an optimal DNA packaging constraint of 4700 base pairs and ectopic expression. RATIONALE: Increasing the expression levels of the normal gene copy by directly targeting the endogenous gene regulatory elements that control it could potentially correct haploinsufficiency. CRISPR-mediated activation (CRISPRa), whereby a nuclease-deficient Cas9 (dCas9) is used to target a transcriptional activator to the gene’s regulatory element (promoter or enhancer), could be used for this purpose. Such an approach could overcome the ectopic expression and DNA packaging limitations of rAAV. Using obesity as a model, we tested in mice whether CRISPR-mediated activation of the existing normal copy of two different genes, Sim1 or Mc4r, where loss-of-function mutations that lead to haploinsufficiency are a major cause of human obesity, can rescue their obesity phenotype. RESULTS: We first generated a transgenic CRISPRa system using dCas9 fused to a transcriptional activator, VP64, to test whether it can rescue the obesity phenotype in a Sim1 haploinsufficient mouse model. CRISPRa targeting of the Sim1 promoter or its hypothalamusspecific enhancer, which is 270 kilobases away from the gene, in Sim1 haploinsufficient mice increased the expression of the normal copy of Sim1. This up-regulation was sufficient to rescue the obesity phenotype of Sim1 heterozygous mice and led to significantly reduced food intake and body fat content in thesemice. We assessed the off-targeting effects of CRISPRa using both RNA sequencing (RNA-seq) and Cas9 chromatin immunoprecipitation sequencing (ChIPseq) analyses. We found CRISPRa targeting to be highly specific and without any overt changes in the expression of other genes. We also observed that Sim1 up-regulation occurred only in tissues where the regulatory element (promoter or enhancer) that was being targeted was active. Although promoter-CRISPRa-targeted mice up-regulated Sim1 in all the tissues where it is expressed, the enhancer-CRISPRa-targeted mice showed Sim1 up-regulation only in the hypothalamus. We then delivered CRISPRa packaged into rAAV targeting the Sim1 promoter or its hypothalamus-specific enhancer using either Streptococcus pyogenes or the shorter Staphylococcus aureus CRISPRa system. We show that postnatal injection of CRISPRa-rAAV into the hypothalamus can up-regulate Sim1 expression and rescue the obesity phenotype in Sim1 haploinsufficient mice in a long-lasti...
Inspired by natural biomolecular machines, synthetic molecular-level machines have been proven to perform well-defined mechanical tasks and measurable work. To mimic the function of channel proteins, we herein report the development of a synthetic molecular shuttle, [2]rotaxane 3, as a unimolecular vehicle that can be inserted into lipid bilayers to perform passive ion transport through its stochastic shuttling motion. The [2]rotaxane molecular shuttle is composed of an amphiphilic molecular thread with three binding stations, which is interlocked in a macrocycle wheel component that tethers a K+ carrier. The structural characteristics enable the rotaxane to transport ions across the lipid bilayers, similar to a cable car, transporting K+ with an EC50 value of 1.0 μM (3.0 mol % relative to lipid). We expect that this simple molecular machine will provide new opportunities for developing more effective and selective ion transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.