The PR domain containing 16 (PRDM16) is a member of the Prdm family, and is known to regulate cell differentiation. In the present study, DNA pool sequencing methods were employed to screen genetic variations in the chicken PRDM16 gene. The results revealed four novel single nucleotide polymorphisms (SNPs): NC_006108.2: g.92188G>A, XM_417551: c.1161C>T (Ala/Ala, 387aa), c.1233C>T (Ser/Ser, 411aa) and c.1433G>A (Ser/Asn, 478aa). The BglI polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to detect c.1161C>T, while HhaI Forced PCR-RFLP methods were used to detect 1233C>T and c.1433G>A in 964 chickens. The chickens comprised 38 grandparents, 66 F(1) parents and 860 F(2) birds derived from an F(2) resource population of Gushi chickens crossed with Anka broilers. The associations of the polymorphisms in the chicken PRDM16 gene with performance traits were analyzed in the 860 F(2) chickens. The results indicated that the three SNPs were significantly associated with growth, fatness and meat quality traits in the chickens. In particular, the polymorphisms of the missense SNP (c.1433G>A) had positive effects on chicken body weight and body size at different stages. It affected also fatness traits significantly. Comparison of the different genotypes of c.1433G>A showed that the GG genotype favored chicken growth and fatness traits.
In recent years, genome engineering technology has provided unprecedented opportunities for site-specific modification of biological genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 is one such means that can target a specific genome locus. It has been applied in human cells and many other organisms. Meanwhile, to efficiently enrich targeted cells, several surrogate systems have also been developed. However, very limited information exists on the application of CRISPR/Cas9 in chickens. In this study, we employed the CRISPR/Cas9 system to induce mutations in the peroxisome proliferator-activated receptor-γ (PPAR-γ), ATP synthase epsilon subunit (ATP5E), and ovalbumin (OVA) genes in chicken DF-1 cells. The results of T7E1 assays showed that the mutation rate at the three different loci was 0.75%, 0.5%, and 3.0%, respectively. In order to improve the mutation efficiency, we used the PuroR gene for efficient enrichment of genetically modified cells with the surrogate reporter system. The mutation rate, as assessed via the T7E1 assay, increased to 60.7%, 61.3%, and 47.3%, and subsequent sequence analysis showed that the mutation efficiency increased to 94.7%, 95%, and 95%, respectively. In addition, there were no detectable off-target mutations in three potential off-target sites using the T7E1 assay. As noted above, the CRISPR/Cas9 system is a robust tool for chicken genome editing.
The high morbidity, complex seasonality, and recurring risk of hand-foot-andmouth disease (HFMD) exert a major burden in China. Forecasting its epidemic trends is greatly instrumental in informing vaccine and targeted interventions. This study sets out to investigate the usefulness of an advanced exponential smoothing state space framework by combining Box-Cox transformations, Fourier representations with time-varying coefficients and autoregressive moving average (ARMA) error correction (TBATS) method to assess the temporal trends of HFMD in China. Methods: Data from January 2009 to December 2019 were drawn, and then they were split into two segments comprising the in-sample training data and out-of-sample testing data to develop and validate the TBATS model, and its fitting and forecasting abilities were compared with the most frequently used seasonal autoregressive integrated moving average (SARIMA) method. Results: Following the modelling procedures of the SARIMA and TBATS methods, the SARIMA (1,0,1)(0,1,1) 12 and TBATS (0.024, {1,1}, 0.855, {<12,4>}) specifications were recognized as being the optimal models, respectively, for the 12-step ahead forecasting, along with the SARIMA (1,0,1)(0,1,1) 12 and TBATS (0.062, {1,3}, 0.86, {<12,4>}) models as being the optimal models, respectively, for the 24-step ahead forecasting. Among them, the optimal TBATS models produced lower error rates in both 12-step and 24-step ahead forecasting aspects compared to the preferred SARIMA models. Descriptive analysis of the data showed a significantly high level and a marked dual seasonal pattern in the HFMD morbidity. Conclusion:The TBATS model has the capacity to outperform the most frequently used SARIMA model in forecasting the HFMD incidence in China, and it can be recommended as a flexible and useful tool in the decision-making process of HFMD prevention and control in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.