Cholesky factorization is a fundamental problem in most engineering and science computation applications. When dealing with a large sparse matrix, numerical decomposition consumes the most time. We present a vector architecture to parallelize numerical decomposition of Cholesky factorization. We construct an integrated analytical parameterized performance model to accurately predict the execution times of typical matrices under varying parameters. Our proposed approach is general for accelerator and limited by neither field-programmable gate arrays (FPGAs) nor application-specific integrated circuit. We implement a simplified module in FPGAs to prove the accuracy of the model. The experiments show that, for most cases, the performance differences between the predicted and measured execution are less than 10%. Based on the performance model, we optimize parameters and obtain a balance of resources and performance after analyzing the performance of varied parameter settings. Comparing with the state-of-the-art implementation in CPU and GPU, we find that the performance of the optimal parameters is 2x that of CPU. Our model offers several advantages, particularly in power consumption. It provides guidance for the design of future acceleration components.
The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS), is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.