Ferroptosis, a novel form of programmed cell death, is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases, including cancer. Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy. Therefore, ferroptosis-inducing drugs are attracting more attention for cancer treatment. Here, we showed that erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells. Subsequently, we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells, which was accompanied by ROS accumulation, lipid peroxidation, and GSH depletion. The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK, CQ, or necrostatin-1 rescued erianin-induced cell death, indicating that ferroptosis contributed to erianin-induced cell death. Furthermore, we demonstrated that Ca2+/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis. Taken together, our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca2+/CaM-dependent ferroptosis and inhibiting cell migration, and erianin will hopefully serve as a prospective compound for lung cancer treatment.
An elevated plasma concentration of serotonin ([5-HT]) is a common feature of cardiovascular disease often associated with enhanced platelet activation and thrombosis. Whether elevated in vivo plasma 5-HT per se represents an independent risk factor for platelet hyperreactivity or only is an epiphenomenon of cardiovascular disease is poorly understood. We examined in vitro and in vivo platelet function following a 24 hr elevation of plasma [5-HT] in mice. In vivo administration of 5-HT using osmotic minipumps increased plasma [5-HT] in treated mice compared to control mice instrumented with saline loaded pumps. 5-HT infusion did not increase systolic blood pressure, but markers of platelet activation including P-selectin and PEJon/A staining were increased and these findings coincided with the enhanced aggregation of isolated platelets in response to type I fibrillar collagen. Tail bleeding times and the time to occlusion following chemical damage to the carotid artery were shortened in 5-HT-infused mice. 5-HT-infused mice were treated with paroxetine (Prx) to block 5-HT uptake via the serotonin transporter (SERT). Prx lowered platelet [5-HT] and attenuated platelet activation and aggregation. These results and our biochemical indices of enhanced 5-HT intracellular signaling in the platelets of 5-HT-infused mice reveal a mechanistic link between elevated plasma [5-HT], abnormal intracellular 5-HT signaling and accentuated platelet aggregation. Although a down-regulation of the serotonin transporter (SERT) on the platelet surface may counteract the pro-thrombotic influence of elevated plasma [5HT], this compensatory mechanism may fail to prevent the increased thrombotic risk caused by elevated plasma [5-HT].
Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we “clone” the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.