This chapter presents a class of distributionally robust optimization problems in which a decision-maker has to choose an action in an uncertain environment. The decision-maker has a continuous action space and aims to learn her optimal strategy. The true distribution of the uncertainty is unknown to the decision-maker. This chapter provides alternative ways to select a distribution based on empirical observations of the decision-maker. This leads to a distributionally robust optimization problem. Simple algorithms, whose dynamics are inspired from the gradient flows, are proposed to find local optima. The method is extended to a class of optimization problems with orthogonal constraints and coupled constraints over the simplex set and polytopes. The designed dynamics do not use the projection operator and are able to satisfy both upper-and lower-bound constraints. The convergence rate of the algorithm to generalized evolutionarily stable strategy is derived using a mean regret estimate. Illustrative examples are provided.
The Generative Adversarial Network (GAN) has recently been applied to generate synthetic images from text. Despite significant advances, most current state-of-the-art algorithms are regular-grid region based; when attention is used, it is mainly applied between individual regular-grid regions and a word. These approaches are sufficient to generate images that contain a single object in its foreground, such as a "bird" or "flower". However, natural languages often involve complex foreground objects and the background may also constitute a variable portion of the generated image. Therefore, the regular-grid based image attention weights may not necessarily concentrate on the intended foreground region(s), which in turn, results in an unnatural looking image. Additionally, individual words such as "a", "blue" and "shirt" do not necessarily provide a full visual context unless they are applied together. For this reason, in our paper, we proposed a novel method in which we introduced an additional set of attentions between truegrid regions and word phrases. The true-grid region is derived using a set of auxiliary bounding boxes. These auxiliary bounding boxes serve as superior location indicators to where the alignment and attention should be drawn with the word phrases. Word phrases are derived from analysing Part-of-Speech (POS) results. We perform experiments on this novel network architecture using the Microsoft Common Objects in Context (MSCOCO) dataset and the model generates 256 × 256 conditioned on a short sentence description. Our proposed approach is capable of generating more realistic images compared with the current state-ofthe-art algorithms.
Computer vision, as a subfield in the general artificial intelligence (AI), is a technology can be visualized and easily found in a large number of state-of-art applications. In this project, undergraduate students performed research on a landmark recognition task using computer vision techniques. The project focused on analyzing, designing, configuring, and testing the two core components in landmark recognition: feature detection and description. The project modeled the landmark recognition system as a tour guide for visitors to the campus and evaluated the performance in the real world circumstances. By analyzing real-world data and solving problems, student’s cognitive skills and critical thinking skills were sharpened. Their knowledge and understanding in mathematical modeling and data processing were also enhanced.
The recent online platforms propose multiple items for bidding. The state of the art, however, is limited to the analysis of one item auction without resubmission. In this paper we study multi-item lowest unique bid auctions (LUBA) with resubmission in discrete bid spaces under budget constraints. We show that the game does not have pure Bayes-Nash equilibria (except in very special cases). However, at least one mixed Bayes-Nash equilibria exists for arbitrary number of bidders and items. The equilibrium is explicitly computed for two-bidder setup with resubmission possibilities. In the general setting we propose a distributed strategic learning algorithm to approximate equilibria. Computer simulations indicate that the error quickly decays in few number of steps. When the number of bidders per item follows a Poisson distribution, it is shown that the seller can get a non-negligible revenue on several items, and hence making a partial revelation of the true value of the items. Finally, the attitude of the bidders towards the risk is considered. In contrast to risk-neutral agents who bids very small values, the cumulative distribution and the bidding support of risk-sensitive agents are more distributed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.