BackgroundEnteric Redmouth Disease (ERM), caused by Yersinia ruckeri, is one of the most important infectious diseases in rainbow trout (Oncorhynchus mykiss) aquaculture in Europe. More recently, non-motile vaccine resistant isolates appear to have evolved and are causing disease problems throughout Europe, including Germany. The aim of this study was to analyse the variation of biochemical and molecular characteristics of Y. ruckeri isolates collected in north west Germany as a basis for strain differentiation. The isolates originated mainly from rainbow trout and were characterised by biochemical profiling, 16S rDNA sequencing, repetitive sequence-based PCRs, including (GTG)5-PCR, BOX-PCR, ERIC-PCR and REP-PCR, and pulsed-field gel electrophoresis (PFGE).ResultsIn total, 83 isolates were characterised, including 48 isolates collected during a field study in north west Germany. All isolates were confirmed as Y. ruckeri by the API 20E system. Five isolates were additionally confirmed as Y. ruckeri by Y. ruckeri-specific PCR and 16S rDNA sequencing. Only 17 isolates hydrolyzed Tween 80/20. Sixty-six isolates (79.5%) were non-motile. Two different patterns were obtained by REP-PCR, five patterns by ERIC-PCR, four patterns by (GTG)5-PCR and three patterns by BOX-PCR. NotI-directed PFGE resulted in 17 patterns that differed from each other by 25–29 fragments. Isolates from the field study clustered together as PFGE type C. According to the results of API 20E, repetitive sequence-based PCRs and PFGE, these isolates could be subdivided into 27 different groups.ConclusionsThe detailed molecular and phenotypic characterisation scheme developed in this study could be used to help trace the dissemination of Y. ruckeri isolates, and thus may represent part of improved disease monitoring plans in the future.
Enteric redmouth disease (ERM), caused by Yersinia ruckeri, is among the most important infectious diseases in rainbow trout Oncorhynchus mykiss aquaculture in Europe. Our aim was to analyse the persistence of Y. ruckeri strains in trout farms in northwest Germany and their dissemination between farms based on a detailed molecular and phenotypical characterisation scheme. The data on identification and characterisation of Y. ruckeri strains and examining the distribution of these strains in the field could serve as a basis for preventive disease monitoring plans. During the observation period from June 2011 until June 2012, we collected 48 Y. ruckeri isolates from 12 different rainbow trout hatcheries. In total, 44 (91.7%) of the isolates were nonmotile; in particular, all isolates recovered during the sampling period in winter and early spring were non-motile. In several trout farms, characteristic farm-specific Y. ruckeri isolates from particular typing groups were isolated throughout the year, while in other farms, which had a trading relationship between each other, ERM outbreaks were caused by Y. ruckeri from the same typing group. Our data indicate that in some farms, the causative Y. ruckeri strains persisted in the respective trout farm. The presence of Y. ruckeri from the same typing group in farms with a trading relationship indicates a dissemination of the infection between the farms. KEY WORDS: Epidemiology · Enteric redmouth disease · Rainbow trout · Oncorhynchus mykissResale or republication not permitted without written consent of the publisher FREE REE ACCESS CCESS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.