In budding yeast, many proteins involved in endocytic internalization, including adaptors and actin cytoskeletal proteins, are localized to cortical patches of differing protein composition. Using multicolor real-time fluorescence microscopy and particle tracking algorithms, we define an early endocytic pathway wherein an invariant sequence of changes in cortical patch protein composition correlates with changes in patch motility. Three Arp2/3 activators each showed a distinct behavior, suggesting distinct patch-related endocytic functions. Actin polymerization occurs late in the endocytic pathway and is required both for endocytic internalization and for patch disassembly. In cells lacking the highly conserved endocytic protein Sla2p, patch motility was arrested and actin comet tails associated with endocytic patch complexes. Fluorescence recovery after photobleaching of the actin comet tails revealed that endocytic complexes are nucleation sites for rapid actin polymerization. Attention is now focused on the mechanisms by which the order and timing of events in this endocytic pathway are achieved.
Actin polymerization essential for endocytic internalization in budding yeast is controlled by four nucleation promoting factors (NPFs) that each exhibits a unique dynamic behavior at endocytic sites. How each NPF functions and is regulated to restrict actin assembly to late stages of endocytic internalization is not known. Quantitative analysis of NPF biochemical activities, and genetic analysis of recruitment and regulatory mechanisms, defined a linear pathway in which protein composition changes at endocytic sites control actin assembly and function. We show that yeast WASP initiates actin assembly at endocytic sites and that this assembly and the recruitment of a yeast WIP-like protein by WASP recruit a type I myosin with both NPF and motor activities. Importantly, type I myosin motor and NPF activities are separable, and both contribute to endocytic coat inward movement, which likely represents membrane invagination. These results reveal a mechanism in which actin nucleation and myosin motor activity cooperate to promote endocytic internalization.
Genome editing holds promise for correcting pathogenic mutations. However, it is difficult to determine off-target effects of editing due to single nucleotide polymorphism in individuals. Here, we developed a method named GOTI (Genome-wide Off-target analysis by Two-cell embryo Injection) to detect off-target mutations by editing one blastomere of two-cell mouse embryos using either CRISPR-Cas9 or base editors. Comparison of the whole genome sequences of progeny cells of edited vs. non-edited blastomeres at E14.5 showed that off-target single nucleotide variants (SNVs) were rare in embryos edited by CRISPR-Cas9 or adenine base editor, with a frequency close to the spontaneous mutation rate. In contrast, cytosine base editing induced SNVs with over 20-fold higher frequencies, requiring a solution to address its fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.