Harvesting ambient vibration energy using piezoelectric elements is a popular energy harvesting technique. Energy harvesting efficiency is the research focus. Using synchronous electric charge extraction technology in piezoelectric energy harvesting systems can greatly improve the energy harvesting efficiency. This article presents a self-powered efficient synchronous electric charge extraction circuit for piezoelectric energy harvesting systems, in which four self-powered switch circuits are used to optimize the time sequence of charge extraction so that the rectifier bridge circuit used in traditional synchronous electric charge extraction can be saved. The effect of phase lag on extraction efficiency, system energy, and loss of overall circuit is analyzed. A piezoelectric vibration experimental platform is built for testing the power generation performance of the self-powered efficient synchronous electric charge extraction and those published energy harvesting circuits. The experimental results accord with the theoretical analysis. Moreover, the harvesting energy of the proposed self-powered efficient synchronous electric charge extraction is about three times more than those of the standard energy harvesting circuit under its maximum power point and the self-powered synchronized switch harvesting on inductor in most cases. The energy harvesting efficiency of self-powered efficient synchronous electric charge extraction remains at a high level (>80%) in most cases, and the maximum energy harvesting efficiency is up to 85.1%.
Harvesting vibration energy to power wearable devices has become a hot research topic, while the output power and conversion efficiency of a vibration energy harvester with a single electromechanical conversion mechanism is low and the working frequency band and load range are narrow. In this paper, a new structure of piezoelectric electromagnetic coupling up-conversion multi-directional vibration energy harvester is proposed. Four piezoelectric electromagnetic coupling cantilever beams are installed on the axis of the base along the circumferential direction. Piezoelectric plates are set on the surface of each cantilever beam to harvest energy. The permanent magnet on the beam is placed on the free end of the cantilever beam as a mass block. Four coils for collecting energy are arranged on the base under the permanent magnets on the cantilever beams. A bearing is installed on the central shaft of the base and a rotating mass block is arranged on the outer ring of the bearing. Four permanent magnets are arranged on the rotating mass block and their positions correspond to the permanent magnets on the cantilever beams. The piezoelectric cantilever is induced to vibrate at its natural frequency by the interaction between the magnet on cantilever and the magnets on the rotating mass block. It can collect the nonlinear impact vibration energy of low-frequency motion to meet the energy harvesting of human motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.