We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton slitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques.
Three-dimensional (3D) lithiophilic host is one of the most effective ways to regulate the Li dendrites and volume change in working Li metal anode. The state-of-the-art 3D lithiophilic hosts are facing one main challenge in that the lithiophilic layer would melt or fall off in high-temperature environment when using the thermal infusion method. Herein, a 3D porous CuZn alloy host containing anchored lithiophilic Zn sites is employed to prestore Li using the thermal infusion strategy, and a 3D composite Li is thus fabricated. Benefiting from the lithiophilic Zn sites with a strong adsorption capacity with Li, which is based on the analyses of the nucleation overpotential, binding energy calculation, and the operando optical observation of Li plating/stripping behaviors, facile uniform Li nucleation and dendrite-free Li deposition could be achieved in the interior of the 3D porous CuZn alloy host and the 3D composite Li shows remarkable enhancement in electrochemical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.