RNA molecules carry out various cellular functions, and understanding the mechanisms behind their functions requires the knowledge of their 3D structures. Different types of computational methods have been developed to model RNA 3D structures over the past decade. These methods were widely used by researchers although their performance needs to be further improved. Recently, along with these traditional methods, machine-learning techniques have been increasingly applied to RNA 3D structure prediction and show significant improvement in performance. Here we shall give a brief review of the traditional methods and recent related advances in machine-learning approaches for RNA 3D structure prediction.
Considerable progress has been made in the prediction methods of 3D structures of RNAs. In contrast, no such methods are available for DNAs. The determination of 3D structures of the latter is also increasingly needed for understanding their functions and designing new DNA molecules. Since the number of experimental structures of DNA is limited at present, here, we propose a computational and template-based method, 3dDNA, which combines DNA and RNA template libraries to predict DNA 3D structures. It was benchmarked on three test sets with different numbers of chains, and the results show that 3dDNA can predict DNA 3D structures with a mean RMSD of about 2.36 Å for those with one or two chains and fewer than 4 Å with three or more chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.