A simple and facile method for obtaining patterned graphene under ambient conditions on the surface of diverse materials ranging from renewable precursors such as food, cloth, paper, and cardboard to high-performance polymers like Kevlar or even on natural coal would be highly desirable. Here, we report a method of using multiple pulsed-laser scribing to convert a wide range of substrates into laser-induced graphene (LIG). With the increased versatility of the multiple lase process, highly conductive patterns can be achieved on the surface of a diverse number of substrates in ambient atmosphere. The use of a defocus method results in multiple lases in a single pass of the laser, further simplifying the procedure. This method can be implemented without increasing processing times when compared with laser induction of graphene on polyimide (Kapton) substrates as previously reported. In fact, any carbon precursor that can be converted into amorphous carbon can be converted into graphene using this multiple lase method. This may be a generally applicable technique for forming graphene on diverse substrates in applications such as flexible or even biodegradable and edible electronics.
Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices.
Laser-induced graphene (LIG) has received much attention since it enables simple and rapid synthesis of porous graphene. This work presents a robust direct-write LIG-based gas sensor, which senses gases based on thermal conductivity, similar to a katharometer sensor. The gas sensors are fabricated by lasing polyimide substrates with a 10.6 μm CO 2 laser to synthesize LIG. This enables the formation of flexible gas sensors which could be incorporated on a variety of surfaces. High surface area and thermal conductivity of the LIG results in rapid response times for all studied gases. The gas sensors are also embedded in cement to form a refractory composite material. These sensors are used to determine composition of various gas mixtures, such as N 2 and CO 2 , which are the most abundant gaseous species in flue gas. Thus, LIG based embeddable sensors could be incorporated in composites to enable electronically functional construction materials.
Triboelectric nanogenerators (TENGs) show exceptional promise for converting wasted mechanical energy into electrical energy. This study investigates the use of laser-induced graphene (LIG) composites as an exciting class of triboelectric materials in TENGs. Infrared laser irradiation is used to convert the surfaces of the two carbon sources, polyimide (PI) and cork, into LIG. This gives the bilayer composite films the high conductivity associated with LIG and the triboelectric properties of the carbon source. A LIG/PI composite is used to fabricate TENGs based on conductor-to-dielectric and metal-free dielectric-to-dielectric device geometries with open-circuit voltages >3.5 kV and peak power >8 mW. Additionally, a single sheet of PI is converted to a metal-free foldable TENG. The LIG is also embedded within a PDMS matrix to form a single-electrode LIG/PDMS composite TENG. This single-electrode TENG is highly flexible and stretchable and was used to generate power from mechanical contact with skin. The LIG composites present a class of triboelectric materials that can be made from naturally occurring and synthetic carbon sources.
The hybridization of graphene with other inorganic nanostructures has endowed graphene with enhanced and varied functionalities. Here we demonstrate a facile and improved approach to convert biodegradable cedar wood into graphene embedded with various metal nanocrystals (cedar-LIG-M, LIG is laser-induced graphene, M = Cu, Co, Ni, Fe, NiFe) by sonication-assisted soaking and one-step CO2 laser scribing. Organic biomass was transformed to hierarchical porous graphene via laser induction, whereas metal salts were reduced to elemental metals simultaneously by the carbothermal reaction and reducing atmosphere generated during the lignocellulose decomposition. The as-prepared cedar-LIG-M possesses an ordered porous structure, good conductivity, unique ferromagnetic behavior and excellent electrochemical catalytic performance. As a demonstration, the cedar-LIG-NiFe electrode has a low overpotential of 296 mV at a current density of 10 mA cm–2 for oxygen evolution reactions. The performance of the electrode continued to improve at the initial testing stage due to the in situ activation as a result of the increased oxidation states of nickel and iron during electrochemical oxygen evolution. In addition, the cedar-LIG-NiFe could also serve as an electromagnetic interference shielding material with shielding effectiveness up to 54 dB. The simplicity and versatility of this technique provides a route for the synthesis of various carbon-based hybrid materials with potential applications of the products in many different fields, such as energy storage, electrocatalysis, electromagnetic interference shielding, and water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.