Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid β-proteins (Aβ) is a critical factor in the pathogenesis of Alzheimer’s disease (AD). Several therapeutic interventions attempting to lower Aβ have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aβ production/clearance/toxicity and do not consider the heterogeneity of human Aβ species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aβ species. Here we confirmed prior findings that soluble Aβ oligomers, much more than fibrillar amyloid plaque cores or Aβ monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aβ levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aβ (including Aβ1–37, Aβ1–38, Aβ1–39), pre-Aβ APP fragments (− 30 to − 1) and N-terminally extended Aβs (− 30 to + 40) each showed much less synaptotoxicity than longer Aβs (Aβ1–42 - Aβ1–46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aβ oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aβ oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0626-x) contains supplementary material, which is available to authorized users.
The availability of blood-based assays detecting Alzheimer’s disease (AD) pathology should greatly accelerate AD therapeutic development and improve clinical care. This is especially true for markers that capture the risk of decline in pre-symptomatic stages of AD, as this would allow one to focus interventions on participants maximally at risk and at a stage prior to widespread synapse loss and neurodegeneration. Here we quantify plasma concentrations of an N-terminal fragment of tau (NT1) in a large, well-characterized cohort of clinically normal elderly who were followed longitudinally. Plasma NT1 levels at study entry (when all participants were unimpaired) were highly predictive of future cognitive decline, pathological tau accumulation, neurodegeneration, and transition to a diagnosis of MCI/AD. These predictive effects were particularly strong in participants with even modestly elevated brain β-amyloid burden at study entry, suggesting plasma NT1 levels capture very early cognitive, pathologic and neurodegenerative changes along the AD trajectory.
Objective Oligomeric forms of amyloid β protein (oAβ) are believed to be principally responsible for neurotoxicity in Alzheimer disease (AD), but it is not known whether anti‐Aβ antibodies are capable of lowering oAβ levels in humans. Methods We developed an ultrasensitive immunoassay and used it to measure oAβ in cerebrospinal fluid (CSF) from 104 AD subjects participating in the ABBY and BLAZE phase 2 trials of the anti‐Aβ antibody crenezumab. Patients received subcutaneous (SC) crenezumab (300mg) or placebo every 2 weeks, or intravenous (IV) crenezumab (15mg/kg) or placebo every 4 weeks for 68 weeks. Ninety‐eight of the 104 patients had measurable baseline oAβ levels, and these were compared to levels at week 69 in placebo (n = 28), SC (n = 35), and IV (n = 35) treated patients. Results Among those receiving crenezumab, 89% of SC and 86% of IV patients had lower levels of oAβ at week 69 versus baseline. The difference in the proportion of patients with decreasing levels was significant for both treatment arms: p = 0.0035 for SC and p = 0.01 for IV crenezumab versus placebo. The median percentage change was −48% in the SC arm and −43% in the IV arm. No systematic change was observed in the placebo group, with a median change of −13% and equivalent portions with negative and positive change. Interpretation Crenezumab lowered CSF oAβ levels in the large majority of treated patients tested. These results support engagement of the principal pathobiological target in AD and identify CSF oAβ as a novel pharmacodynamic biomarker for use in trials of anti‐Aβ agents. ANN NEUROL 2019;86:215–224
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.