Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.
BACKGROUND: Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. b-TCP is a biomaterial commonly used in bone tissue engineering to treat bone defects, and its multifunctionality can be achieved by co-doping different metal ions. Magnesium doping in biomaterials has been shown to alter physicochemical properties of cells and enhance osteogenesis. METHODS: A series of Mg-doped TCP scaffolds were manufactured by using cryogenic 3D printing technology and sintering. The characteristics of the porous scaffolds, such as microstructure, chemical composition, mechanical properties, apparent porosity, etc., were examined. To further study the role of magnesium ions in simultaneously inducing osteogenesis and angiogenesis, human bone marrow mesenchymal stem cells (hBMSCs) and human umblical vein endothelial cells (HUVECs) were cultured in scaffold extracts to investigate cell proliferation, viability, and expression of osteogenic and angiogenic genes. RESULTS: The results showed that Mg-doped TCP scaffolds have the advantages of precise design, interconnected porous structure, and similar compressive strength to natural cancellous bone. hBMSCs and HUVECs exhibit high proliferation rate, cell morphology and viability in a certain amount of Mg 2? . In addition, this concentration of magnesium can also increase the expression levels of osteogenic and angiogenic biomarkers. CONCLUSION: A certain concentration of magnesium ions plays an important role in new bone regeneration and reconstruction. It can be used as a simple and effective method to enhance the osteogenesis and angiogenesis of bioceramic scaffolds, and support the development of biomaterials and bone tissue engineering scaffolds. Keywords 3D porous scaffolds Á Ion doping Á Magnesium ions Á Osteogenesis Á Angiogenesis Yifan Gu and Jing Zhang contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.