In clinical practice, osteoarthritis (OA) is frequently misdiagnosed as rheumatoid arthritis (RA) and osteonecrosis (ON), leading to wrong treatment and disease progression. Circular RNA- (circRNA-) 016901 affects the recovery of irradiation-induced injury in the bone, while its role in OA is unclear. This study is aimed at exploring the role of circRNA-016901 in improving the diagnostic accuracy of OA. The present study included patients with OA ( n = 80 ), patients with RA ( n = 80 ), patients with ON ( n = 80 ), and healthy controls (HCs, n = 80 ) to collect plasma samples before and after treatment. RT-qPCR was performed to detect RNA accumulation of circRNA-016901 in plasma samples from all participants. The role of plasma expression of circRNA-016901 in predicting OA was studied with ROC curve analysis. Association between plasma expression of circRNA-016901 and patients’ clinical features was analyzed with the chi-squared test. Compared to HCs, increased accumulation of circRNA-016901 was only observed in the OA group, but not in the RA and ON groups before treatment. OA patients were effectively separated from the RA, ON, and HC groups using plasma expression of circRNA-016901 before treatment as a biomarker. Plasma expression of circRNA-016901 was closely associated with OA patients’ disease severity. After treatment, decreased plasma expression levels of circRNA-016901 were only observed in OA patients, while no alteration in plasma circRNA-016901 accumulation was observed in the RA and ON groups. In conclusion, circRNA-016901 is accumulated to high levels in OA and may be applied to improve the diagnostic accuracy of OA.
AbstractmicroRNAs (miRNAs) are endogenous small RNAs that are key regulatory factors participating in various biological activities such as the signaling of phosphorus deficiency in the plant. Previous studies have shown that miR156 expression was modulated by phosphorus starvation in Arabidopsis and soybean. However, it is not clear whether the over-expression of soybean miR156b (GmmiR156b) can improve a plant’s tolerance to phosphorus deficiency and affect yield component traits. In this study, we generated Arabidopsis transgenic lines overexpressing GmmiR156b and investigated the plant’s response to phosphorus deficiency. Compared with the wild type, the transgenic Arabidopsis seedlings had longer primary roots and higher phosphorus contents in roots under phosphorus-deficit conditions, but lower fresh weight root/shoot ratios under either phosphorus-deficient or sufficient conditions. Moreover, the GmmiR156b overexpression transgenic lines had higher phosphorus content in shoots of adult plants and grew better than the wide type under phosphorus-deficient conditions, and exhibited increased seed yields as well as strong pleiotropic developmental morphology such as dwarfness, prolonged growth period, bushy shoot/branching, and shorter silique length, suggesting that the transgenic lines were more tolerant to phosphorus deficiency. In addition, the expression level of four SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes (i.e., AtSPL4/5/6/15) were markedly suppressed in transgenic plants, indicating that they were the main targets negatively regulated by GmmiR156b (especially AtSPL15) and that the enhanced tolerance to phosphorus deficiency and seed yield is conferred mainly by the miR156-mediated downregulation of AtSPL15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.