This paper proposes a new optical configuration for a two-axis surface encoder that can measure the in-plane (X-axis) and out-of-plane (Z-axis) displacements of a positioning stage. The two-axis surface encoder is composed of a scale grating and a sensor head. A transparent grating is employed in the sensor head for measurement of the Z-directional displacement of the scale grating based on the Fizeau-type measurement method; a reference beam reflected from the transparent grating and the zeroth-order diffracted beam from the scale grating are superimposed to generate an interference signal. A pair of prisms and a beam splitter are also employed in the sensor head, so that the positive and negative first-order diffracted beams can be superimposed over a long working distance to generate an interference signal for measurement of the X-directional displacement of the scale grating. Focusing on the new, extended Z-directional measurement mechanism, proof-of-principle experiments were carried out to verify the feasibility of the proposed optical configuration for the surface encoder that can measure the uni-directional displacements of a scale grating along the X- and Z-axis. Experimental results from the developed optical configuration demonstrated the achievement of a Z-directional measuring range of ±1.5 mm.
A modified two-axis surface encoder is proposed to separately measure both the in-plane displacement and the Z-directional out-of-plane displacement with minor crosstalk errors. The surface encoder is composed of a scale grating and a small-sized sensor head. In the modified surface encoder, the measurement laser beam from the sensor head is designed to be projected onto the scale grating at a right angle. For measurement of the X- and Y-directional in-plane scale displacement, the positive and negative first-order diffracted beams from the scale grating are superimposed on each other in the sensor head, producing interference signals. On the other hand, the Z-directional out-of-plane scale displacement is measured based on the principle of a Michelson-type interferometer. To avoid the influence of reflection from the middle area of the transparent grating, which causes periodic crosstalk errors in the previous research, a specially fabricated transparent grating with a hole in the middle is employed in the newly designed optical system. A prototype sensor head is constructed, and basic performances of the modified surface encoder are tested by experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.