Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.
Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.
Mutations in ryanodine receptors (RyRs), intracellular Ca2+ channels, are associated with deadly disorders. Despite abundant functional studies, the molecular mechanism of RyR malfunction remains elusive. We studied two single-point mutations at an equivalent site in the skeletal (RyR1 R164C) and cardiac (RyR2 R176Q) isoforms using ryanodine binding, Ca2+ imaging, and cryo–electron microscopy (cryo-EM) of the full-length protein. Loss of the positive charge had greater effect on the skeletal isoform, mediated via distortion of a salt bridge network, a molecular latch inducing rotation of a cytoplasmic domain, and partial progression to open-state traits of the large cytoplasmic assembly accompanied by alteration of the Ca2+ binding site, which concur with the major “hyperactive” feature of the mutated channel. Our cryo-EM studies demonstrated the allosteric effect of a mutation situated ~85 Å away from the pore and identified an isoform-specific structural effect.
Honeybee caste development is nutritionally regulated by royal jelly (RJ). Major royal jelly protein 1 (MRJP1), the most abundant glycoprotein among soluble royal jelly proteins, plays pivotal roles in honeybee nutrition and larvae development, and exhibits broad pharmacological activities in humans. However, its structure has long remained unknown. Herein, we identify and report a 16-molecule architecture of native MRJP1 oligomer containing four MRJP1, four apisimin, and eight unanticipated 24-methylenecholesterol molecules at 2.65 Å resolution. MRJP1 has a unique six-bladed β-propeller fold with three disulfide bonds, and it interacts with apisimin mainly by hydrophobic interaction. Every four 24-methylenecholesterol molecules are packaged by two MRJP1 and two apisimin molecules. This assembly dimerizes to form an H-shaped MRJP14-apisimin4-24-methylenecholesterol8 complex via apisimin in a conserved and pH-dependent fashion. Our findings offer a structural basis for understanding the pharmacological effects of MRJPs and 24-methylenecholesterol, and provide insights into their unique physiological roles in bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.