This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information.
We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally.
The most important problem of spectroscopic chiral analysis is the enantioselective effects of the light-molecule interactions are inherently weak and severely reduced by the environment noises. Enormous efforts had been spent to overcome this problem by enhancing the symmetry break in the light-molecule interactions or reducing the environment noises. Here, we propose an alternative way to solve this problem by using frequency-entangled two-photon pairs as probe signals and detecting them in coincidence, i.e., using quantum chiral spectroscopy. For this purpose, we develop the theory of entanglementassisted quantum chiral spectroscopy. Our results show that the quantum spectra of the leftand right-handed molecules are always distinguishable by suitably configuring the frequencyentangled two-photon pairs. In contrast, the classical spectra of the two enantiomers, where the broadband signal photon is frequency-uncorrelated with the idle one, become indistinguishable in the strong dissipation region. This offers our quantum chiral spectroscopy a great advantage over the classical chiral spectroscopy. Our work opens up an exciting area that exploring profound advantages of the quantum spectroscopy in chiral analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.