Acoustic waves in a linear time-invariant medium are generally reciprocal, however, reciprocity can break down in a time-variant system. In this paper, we report on an experimental demonstration of non-reciprocity in a dynamic one-dimensional phononic crystal, where the local elastic properties are dependent on time. The system consists of an array of repelling magnets, and the on-site elastic potentials of the constitutive elements are modulated by an array of electromagnets. The modulation in time breaks time-reversal symmetry and opens a directional bandgap in the dispersion relation. A theoretical explanation of the observed non-reciprocal behavior is provided as well. This work provides a prototype for developing acoustic diode that can serve in acoustic circuits for rectification applications .
The mechanical properties of ultrathin membranes have attracted considerable attention recently. Nanoindentation based on atomic force microscopy is commonly employed to study mechanical properties. We find that the data processing procedures in previous studies are nice approximations, but it is difficult for them to illustrate the mechanical properties precisely. Accordingly, we develop a revised numerical method to describe the force curve properly, by which the intrinsic mechanical properties of these membranes can be acquired. Combining the nanoindentation measurements with the revised numerical method, we demonstrate that loading-unloading cycles under large load can lead to a pronounced improvement in stiffness of graphene grown by chemical vapor deposition (CVD). The Young's moduli of the stretched CVD graphene membranes can be improved to ∼1 TPa, closing to the value of the pristine graphene. Our findings demonstrate a possible way to recover the exceptional elastic properties of CVD graphene from the softened stiffness caused by wrinkles.
We present an experimental investigation of fracture in self-assembled gold nanoparticle mono- and multilayers attached to elastomer substrates and subjected to tensile stress. Imaging the fracture patterns down to the scale of single particles provides detailed information about the crack width distribution and allows us to compare the scaling of the average crack spacing as a function of strain with predictions by shear-lag models. With increasing particle size, the fracture strength is found to increase while it decreases as the film thickness is built up layer by layer, indicating stress inhomogeneity in the thickness dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.