An optical rotary sensor based on laser self-mixing interferometry is proposed, which enables noncontact and fullcircle rotation measurement of non-cooperative targets with high resolution and sensitivity. The prototype demonstrates that the resolution is 0.1μrad and the linearity is 2.33×10 -4 . Stability of the prototype is 2μrad over 3600s and the repeatability error is below 0.84°under 9-gruop full-circle tests. The theoretical resolution reaches up to 16nrad. Random rotation has been successfully traced with a bionic hand to simulate the tremor process. Error analysis and limitation discussion have been also carried out in the paper. Although the accuracy needs further improvement compared with the best rotary sensor, this method has its unique advantages of non-cooperative target sensing, high sensitivity and electromagnetic immunity. Hence, the optical rotary sensor provides a promising alternative in precise rotation measurement, tremor tracing and nano-motion monitoring.
The device of free-space self-interference microresonator coupled by fiber tapers is proposed. Different from sensors with similar structures on-chip and benefit to the combination between microcavity and optical fiber sensing, the coupling regime is adjustable and a separated sensing area from coupling regions is available. This method makes it feasible to optimize coupling efficiency in detection and broaden the scope of application in dissipative sensing. The transmission spectrum exhibits a distinct phenomenon under a long optical path of sensing arm, including quasi-sinusoidal modulation and profile split. Based on that, transmission characteristics are analyzed by theoretical stimulations and the subsequent experiments are in good agreement with the theory. In addition, we estimate the sensing performance of this device and that the sensitivity can reach −4.76 dB/(10−7 RIU) with a 1 m sensing arm theoretically when applied in monitoring the refractive index change, which is almost an order of magnitude larger than the previously reported data. Besides being adjustable, compact, and efficient, this device shows great potential in the precision measurement and expands the applicable measurement field of similar structures, such as pull pressure that cannot be detected using bus straight waveguides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.