The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Precise assessment of the intricate subgenomic RNA (sg mRNA) populations is required to understand the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing events using short-read sequencing, making the identification of transcription-regulatory sequences (TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize the recombined RNA molecules produced in porcine alveolar macrophages during early passage infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional landscape in PRRSV. The data revealed intriguing differences in subgenomic recombination types between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share the common preferred TRS in both strains. This study also identified a substantial number of TRS-mediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better control of the PRRS.
The ability to regulate endogenous gene expression is critical in biological research. Existing technologies, such as RNA interference, zinc-finger regulators, transcription-activator-like effectors, and CRISPR-mediated regulation, though proved to be competent in significantly altering expression levels, do not provide a quantitative adjustment of regulation effect. As a solution to this problem, we place CRISPR-mediated interference under the control of blue light: while dCas9 protein is constitutively expressed, guide RNA transcription is regulated by YF1-FixJ-PFixK2, a blue light responding system. With a computer-controlled luminous device, the quantitative relationship between target gene expression and light intensity has been determined. As the light intensifies, the expression level of target gene gradually ascends. This remarkable property enables sensor-CRISPRi to accurately interrogate cellular activities.
Acute myeloid leukemia (AML) is a hematologic malignancy with increased lethality.We focused on elucidating the role of Neratinib, a tyrosine kinase inhibitor, in the progression of AML and identify the potential mechanisms. Upon the treatment of Neratinib, autophagy suppressor 3-methyladenine (3-MA) and ferroptosis stimulator Erastin, the viability and proliferation of HL-60 cells were evaluated by cell counting kit-8 and 5-Ethynyl-20-Deoxyuridine staining assays. A flow cytometer was to observe cell cycle and apoptosis. Production of reactive oxygen species (ROS) was tested via 2,7-dichlorodihydrofluorescein diacetate assay. Additionally, malondialdehyde (MDA) content and Fe 2+ activity were examined with commercial kits. LC3-II expression was examined by using immunofluoresence staining. Western blot analysis ascertained the expression of proliferation, apoptosis, ferroptosis and autophagy-associated proteins. It was noted that Neratinib notably mitigated cell viability and proliferation, cut down Ki67 and proliferating cell nuclear antigen expression. Moreover, Neratinib hindered cell cycle at G0/G1 phase whereas exacerbated apoptosis. ROS, MDA and Fe 2+ activities were elevated by Neratinib, coupled with the reduced glutathione peroxidase 4, ferritin heavy chain 1 expression and enhanced acyl-CoA synthetase long-chain family member 4 expression. Furthermore, Neratinib promoted autophagy of HL-60 cells, evidenced by raised LC3-II, ATG5, Beclin1 expression and lessened p62 expression. Importantly, 3-MA eased the impacts of Neratinib on cell ferroptosis, proliferation and apoptosis, which were offset by further administration of Erastin. To conclude, Neratinib could suppress proliferation and promote apoptosis of HL-60 cells through autophagy-dependent ferroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.