Human glutathione S-transferase P1-1 (GSTP1-1) is an ubiquitously expressed protein that plays an important role in the detoxification and xenobiotics metabolism. It has been shown that GSTP1-1 interacts with c-Jun NH 2 -terminal kinase (JNK) and suppresses its activity. Here, we report a novel function of GSTP1-1 in regulating tumor necrosis factor-a (TNF-a)-triggered signaling. The present experiments showed that GSTP1-1 physically associated with tumor necrosis factor receptor-associated factor 2 (TRAF2) in vivo and in vitro. Overexpression of GSTP1-1 inhibited TRAF2-induced activation of both JNK and p38 but not of nuclear factor-jB (NF-jB). Glutathione S-transferase P1-1 also attenuated TRAF2-enhanced apoptosis signal-regulating kinase 1 (ASK1) autophosphorylation and inhibited TRAF2-ASK1-induced cell apoptosis by suppressing the interaction of TRAF2 and ASK1. Conversely, silencing of GSTP1-1 expression through RNA interference (RNAi) resulted in increase of TNF-a-dependent TRAF2-ASK1 association followed by hyper-activation of ASK1 and JNK. A mutant GSTP1-1 lacking TRAF domain-binding motif exhibited a significant decline of capacity to bind TRAF2 and block TRAF2-ASK1 signaling compared with the wild type of GSTP1-1. Moreover, the glutathione-conjugating activity of GSTP1-1 was not involved in the regulation of TRAF2 signaling. These findings indicate that GSTP1-1 plays an important regulatory role in TNF-a-induced signaling by forming ligand-binding interactions with TRAF2, which provides a new insight for analysing the protective effects of GSTP1-1 in tumor cells.
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-jB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-jB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-jB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-jB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-jB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.