Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. 1
Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep learning-based assistant to help pathologists differentiate between two subtypes of primary liver cancer, hepatocellular carcinoma and cholangiocarcinoma, on hematoxylin and eosin-stained whole-slide images (WSI), and evaluated its effect on the diagnostic performance of 11 pathologists with varying levels of expertise. Our model achieved accuracies of 0.885 on a validation set of 26 WSI, and 0.842 on an independent test set of 80 WSI. Although use of the assistant did not change the mean accuracy of the 11 pathologists (p = 0.184, OR = 1.281), it significantly improved the accuracy (p = 0.045, OR = 1.499) of a subset of nine pathologists who fell within well-defined experience levels (GI subspecialists, non-GI subspecialists, and trainees). In the assisted state, model accuracy significantly impacted the diagnostic decisions of all 11 pathologists. As expected, when the model's prediction was correct, assistance significantly improved accuracy (p = 0.000, OR = 4.289), whereas when the model's prediction was incorrect, assistance significantly decreased accuracy (p = 0.000, OR = 0.253), with both effects holding across all pathologist experience levels and case difficulty levels. Our results highlight the challenges of translating AI models into the clinical setting, and emphasize the importance of taking into account potential unintended negative consequences of model assistance when designing and testing medical AI-assistance tools.npj Digital Medicine (2020) 3:23 ; https://doi.
An alarming trend between 2005 and 2017 was the decline in the annual number of live kidney donors in the United States. 1-4 This was driven exclusively by the decline in biologically related donors who have historically been the majority of this population. 1 In this changing landscape of live kidney donation, however, there was a steady growth in the number of unrelated donors. 1,5 Although these observed trends differed by donor-recipient relationship, they were similar across race/ethnicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.