The fields of brain‐inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human‐designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal‐to‐insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First‐principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.
An external electric field can affect the growth dynamics of croconic acid (CA) films, especially the heterogeneous nucleation process, as evidenced by the shift of temperature dependence of the nucleation rate in the electric field.
Device applications often require thin film growth with quasi-two-dimensional morphology and crystallization, which are not always compatible. In this work, we exploit the method of low-temperature deposition followed by restrained crystallization (LDRC) in the growth of crystalline organic molecular thin films, which tend to grow three-dimensionally with random orientations. We demonstrate that for 2-methylbenzimidazole, a molecular ferroelectric that tends to crystallize in spherulites, the quasi-twodimensional films can be grown using LDRC with highly oriented polar axes and single-crystal-level ferroelectric properties. The crystallization process was shown to occur during the postdeposition annealing process using the in situ electrical measurements. The limited diffusion, low nucleation density, and low activation energy were found to be critical for the formation of the plate-shaped quasi-two-dimensional films. These results mark an important step in elucidating the LDRC as an effective and general approach for fabricating films with balanced crystallinity and morphology which are critical for applications.
VO2 thin films were grown on conducting oxide underlayer SrRuO3 buffered SrTiO3 (111) and Si/SiO2 substrates, respectively, using sputtering. X-ray diffraction phi-scans revealed the epitaxial nature of the VO2 films grown on SrRuO3 buffered SrTiO3 and polycrystalline structure for films grown on SrRuO3 buffered Si/SiO2. X-ray photoelectron spectroscopy confirms a dominant presence of V4+ in both films and establishes a high-quality growth of single-phase VO2 films. Temperature and electric-field driven metal-insulator-transition in both the in-plane and out-of-plane configurations were investigated. Depending on the configuration, the resistance change across the metal-insulator-transition varies from a factor of 1.57–3. The measured resistance in each state as well as the magnitude of resistance change were similar during temperature and electric-field driven metal-insulator-transition. To shed light on the suppressed metal-insulator-transition characteristics due to the current shunting effect from conducting SrRuO3 bottom electrode, a distributed resistance network model is proposed and benchmarked against reports from the literature. The results demonstrate the growth of high-quality VO2 on conducting SrRuO3 layers and their electrical behavior, which is of particular interest for all-oxide electronic devices utilizing phase transitions such as resistive memory and neuromorphic oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.