Maintaining undifferentiated state and self-renewal ability of embryonic stem cells is a process that many genes and factors participate in. Using bioinformatics analyses and suppression subtractive hybridization we cloned a novel human gene related to the proliferation of human embryonic stem (hES) cells and its mouse homologue and identified them as being borealin. Our data demonstrated that borealin was highly expressed in undifferentiated ES cells, mouse pre-implantation embryos and the brain of 8.5-9.5 day post-coitum mouse embryos. Furthermore, following Borealin depletion by microinjecting anti-Borealin antibody into the zygotes the mouse embryos were arrested at the 2 or 4-cell stage and chromosomes could not correctly localize at the equator plane of the mitotic spindle and most cells had two or more nuclei. Taken together, these results indicate that Borealin plays a crucial role in the early mouse embryonic development.
Background Previous studies suggested that non-invasive preimplantation genetic testing (niPGT) for intracytoplasmic sperm injection (ICSI) blastocysts can be used to identify chromosomal ploidy and chromosomal abnormalities. Here, we report the feasibility and performance of niPGT for conventional in vitro fertilization (IVF) blastocysts. Methods This was a prospective observational study. In the preclinical stage, whole genome amplification and NGS were performed using the sperm spent culture medium (SCM). Then, trophectoderm (TE) biopsies and corresponding SCM derived from 27 conventional IVF monopronuclear embryos were collected. In the clinical stage, samples from 25 conventional IVF cycles and 37 ICSI cycles from April 2020–August 2021 were collected for performance evaluation. Results Preclinically, we confirmed failed sperm DNA amplification under the current amplification system. Subsequent niPGT from the 27 monopronuclear blastocysts showed 69.2% concordance with PGT results of corresponding TE biopsies. In the clinical stage, no paternal contamination was observed in any of the 161 SCM samples from conventional IVF. While maternal contamination was observed in 29.8% (48/161) SCM samples, only 2.5% (4/161) samples had a contamination ratio ≥ 50%. Compared with that of TE biopsy, the performances of NiPGT from 161 conventional IVF embryos and 122 ICSI embryos were not significantly different (P > 0.05), with ploidy concordance rates of 75% and 74.6% for IVF and ICSI methods, respectively. Finally, evaluation of the euploid probability of embryos with different types of niPGT results showed prediction probabilities of 82.8%, 77.8%, 62.5%, 50.0%, 40.9% and 18.4% for euploidy, sex-chromosome mosaics only, low-level mosaics, multiple abnormal chromosomes, high-level mosaics and aneuploidy, respectively. Conclusions Our research results preliminarily confirm that the niPGT approach using SCM from conventional IVF has comparable performance with ICSI and might broadening the application scope of niPGT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.