Background China contributes to a significant proportion of the myopia in the world. The study aims to investigate the utilization of various correction methods and health service in urban China, and to estimate the cost of myopia treatment and prevention. In addition, we aimed to estimate the cost of productivity loss due to myopia. Methods The study was a cross-sectional investigation carried out in urban areas in three provinces located in the east (Shanghai), middle (Anhui) and west part (Yunnan) of China, in 2016. A total of 23819 people aged between 5 to 50 years were included. Health utilization and the cost of myopia were analyzed from patients’ perspective. Results The total number of people with myopia in the urban China was estimated to be 143.6 million. The correction rate was 89.5%, 92.1%, and 92.7% for Anhui, Shanghai, and Yunnan (χ 2 = 19.5, P < 0.01). Over the recent year, 20.6%, 16.8%, and 28.8% of myopic subjects visited hospital due to myopia, in Anhui, Shanghai and Yunnan. The annual cost of treatment and prevention of myopia was 10.1 billion US dollar (US$, floating from 9.2 to 11.2 billion US$), and the cost per person was 69US$. The annual cost of loss of productivity was estimated to be 6.7 billion US$ for those with mild to moderate visual impairment (floating from 6.1 to 7.4 billion US$), and 9.4 billion US$ (floating from 8.5 to 10.4 billion US$) for those with severe visual impairment to blindness. Therefore, the total economic burden of myopia was estimated as 173.6 billion CNY (26.3 billion US$). Conclusions The present study shows that myopia leads to substantial economic burden in China. The loss of productivity caused by myopia is an important part of the disease burden compared to the cost of correction and treatment paid by individuals. Therefore, the focus of myopia prevention and control should be to decrease the myopia prevalence, and prevent the uncorrected refractive errors and the irreversible damage of visual acuity by high myopia.
Background The use of ocular hypotensive drugs has been reported to attenuate myopia progression. This study explores whether brimonidine can slow myopia progression in the guinea pig form-deprivation (FD) model. Methods Three-week-old pigmented male guinea pigs (Cavia porcellus) underwent monocular FD and were treated with 3 different methods of brimonidine administration (eye drops, subconjunctival or intravitreal injections). Four different concentrations of brimonidine were tested for intravitreal injection (2 μg/μL, 4 μg/μL, 20 μg/μL, 40 μg/μL). All treatments continued for a period of 21 days. Tonometry, retinoscopy, and A-scan ultrasonography were used to monitor intraocular pressure (IOP), refractive error and axial length (AL), respectively. On day 21, guinea pigs were sacrificed for RNA sequencing (RNA-seq) to screen for associated transcriptomic changes. Results The myopia model was successfully established in FD animals (control eye vs. FD eye, respectively: refraction at day 20, 0.97 ± 0.18 D vs. − 0.13 ± 0.38 D, F = 6.921, P = 0.02; AL difference between day 0 and day 21, 0.29 ± 0.04 mm vs. 0.45 ± 0.03 mm, F = 11.655, P = 0.004). Among the 3 different brimonidine administration methods, intravitreal injection was the most effective in slowing myopia progression, and 4 μg/μL was the most effective among the four different concentrations of brimonidine intravitreal injection tested. The AL and the refraction of the brimonidine intravitreal injection group was significantly shorter or more hyperopic than those of other 2 groups. Four μg/μL produced the smallest difference in AL and spherical equivalent difference values. FD treatment significantly increased the IOP. IOP was significantly lower at 1 day after intravitreal injections which was the lowest in FD eye of intravitreal injection of brimonidine. At day 21, gene expression analyses using RNA-seq showed upregulation of Col1a1 and Mmp2 expression levels by intravitreal brimonidine. Conclusions Among the 3 different administration methods, intravitreal injection of brimonidine was the most effective in slowing myopia progression in the FD guinea pig model. Intravitreal brimonidine at 4 μg/μL significantly reduced the development of FD myopia in guinea pigs. Expression levels of the Col1a1 and Mmp2 genes were significantly increased in the retinal tissues of the FD-Inj-Br group.
Purpose: Extensive clinical evidence suggests that time spent outdoors might reduce the risk of myopia. This study aimed to determine whether increasing sunlight exposure has a protective effect on hyperopic-defocus induced myopia in a non-human primate. Methods: Twelve 2-month-old rhesus monkeys were treated monocularly with photorefractive keratectomy (PRK) (4.0 D) and divided randomly into two groups: artificial light (AL; n = 6) and natural light (NL; n = 6). Monkeys in the AL group were reared under artificial (indoor) lighting (08:00-20:00 h). Monkeys in the NL group were exposed to natural (outdoor) lighting for 4 h (09:00-11:00 and 15:00-17:00 h). Ocular refraction, corneal power and axial dimensions were measured before sunlight exposure and every 10 days after PRK. At day 180, retinal histology and apoptosis activity were evaluated by hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase biotin (dUTP) nick end labelling (TUNEL) assay. Results: Mean (AESD) PRK induced anisometropia was +3.11 (0.33) D. At the end of the experiment, both eyes of the NL monkeys exhibited significantly more hyperopia and shorter vitreous chamber depths (VCD), compared with AL monkeys (p < 0.05). The NL group exhibited a significantly slower rate of compensation to the induced anisometropia than the AL group (p < 0.05). The retinas of both groups exhibited normal histology and levels of apoptosis. Conclusions: Moderate sunlight exposure exerts protective effects against the myopic shift resulting from PRK-induced defocus in monkeys. These results are consistent with current clinical findings that increased outdoor exposure protects against myopia development. Sunlight exposure should serve as an independent positive factor in human myopia control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.