Realizing a high solar light conversion magnitude in Cr,Nd: YAG transparent ceramic is crucial to its applications in solar pumped solid state lasers. In this study, high quality Cr,Nd:YAG transparent laser ceramics with homogeneous microstructure and theoretical transmittance were fabricated, and an efficient laser oscillation of watt-level was realized by pumping ceramic at 808 nm. There were no any characteristic absorptions corresponding to Cr2+ or Cr4+ ions detected, even when the Cr3+ ion doping concentration reached 0.6 at.%. Increasing Cr3+ and Nd3+ doping concentrations significantly enhanced the emission intensity of ceramics at 1.06 µm, and energy transfer efficiency of the 0.3 at.% Cr,Nd: YAG ceramics was increased from 14.9% to 36.9% when increasing Nd3+ ion concentration from 0.3 at.% to 1.0 at.%, with an increasing magnitude of 247.6%. The results indicated that Cr,Nd: YAG transparent ceramic is a promising gain medium for solar pumped solid state lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.