In contemporary society, industrialization and rising of terrorism threats highlight the necessity and importance of structural protection against accidental and intentionally malicious blast loads. Consequences of these extreme loading events are known to be catastrophic, involving personnel injuries and fatalities, economic loss and immeasurable social disruption. These impacts are generated not only from direct explosion effects, that is, blast overpressure and primary or secondary fragments, but also from the indirect effects such as structural collapse. The latter one is known to be more critical leading to massive losses. It is therefore imperative to enlighten our structural engineers and policy regulators when designing modern structures. Towards a better protection of concrete structures, efforts have been devoted to understanding properties of construction materials and responses of structures subjected to blast loads. Reliable blast resistance design requires a comprehensive knowledge of blast loading characteristics, dynamic material properties and dynamic response predictions of structures. This article presents a state-of-the-art review of the current blast-resistant design and analysis of concrete structures subjected to blast loads. The blast load estimation, design considerations and approaches, dynamic material properties at high strain rate, testing methods and numerical simulation tools and methods are considered and reviewed. Discussions on the accuracies and advantages of these current approaches and suggestions on possible improvements are also made.
Dynamic material properties, in particular the dynamic strength, of concrete material are usually obtained by conducting laboratory tests such as drop-weight test and Split Hopkinson Pressure Bar (SHPB) test. It is commonly agreed that a few parameters associated with stress wave propagation will affect the test results, including the lateral and axial inertial effect, end friction confinement and stress wave reflection and refraction. Many different measures have been proposed to eliminate or limit the influences of these effects in dynamic tests of material properties. However, owing to the nature of dynamic loadings, especially those with high loading rates, it is very unlikely to completely eliminate these influences in physical testing. Moreover, it is also very difficult to quantify these influences from the laboratory testing data. In the present study, a refined mesoscale concrete material model is developed to simulate impact tests and to study the influences of lateral inertial confinement on concrete compressive strength increment at high strain rate. The commercial software AUTODYN is used to perform the numerical simulations. Numerical simulations of concrete specimens of different dimensions and under impact loads of different loading rates are carried out. The results are compared with those obtained from laboratory tests, with those specified in the code and simulated with homogeneous concrete material model. The reliability of the numerical simulation of impact tests is verified. It is found that the influences of lateral inertial confinement effect on Dynamic Increase Factor (DIF) is strain rate and specimen size dependent. Neglecting aggregates in concrete specimen in laboratory tests and numerical simulations lead to underestimation of DIF of concrete material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.