Objective
To understand radiotherapy-induced dental lesions characterized by enamel loss or delamination near the dentin-enamel junction (DEJ), this study evaluated enamel and dentin nano-mechanical properties and chemical composition before and after simulated oral cancer radiotherapy.
Design
Sections from seven non-carious third molars were exposed to 2 Gy fractions, 5 days/week for 7 weeks for a total of 70 Gy. Nanoindentation was used to evaluate Young’s modulus, while Raman microspectroscopy was used to measure protein/mineral ratios, carbonate/phosphate ratios, and phosphate peak width. All measures were completed prior to and following radiation at the same four buccal and lingual sites 500 and 30 microns from the DEJ in enamel and dentin (E-500, E-30, D-30 and D-500).
Results
The elastic modulus of enamel and dentin was significantly increased (P≤0.05) following radiation. Based on Raman spectroscopic analysis, there was a significant decrease in the protein to mineral ratio (2931/430 cm-1) following radiation at all sites tested except at D-500, while the carbonate to phosphate ratio (1070/960 cm-1) increased at E-30 and decreased at D-500. Finally, phosphate peak width as measured by FWHM at 960 cm-1 significantly decreased at both D-30 and D-500 following radiation.
Conclusions
Simulated radiotherapy produced an increase in the stiffness of enamel and dentin near the DEJ. Increased stiffness is speculated to be the result of the radiation-induced decrease in the protein content, with the percent reduction much greater in the enamel sites. Such changes in mechanical properties and chemical composition could potentially contribute to DEJ biomechanical failure leading to enamel delamination that occurs post-radiotherapy. However, other analyses are required for a better understanding of radiotherapy-induced effects on tooth structure to improve preventive and restorative treatments for oral cancer patients.
There was a significant increasing trend in dental complaint-related ED visits. EDs have become an important site for people with dental problems to seek urgent care, particularly for individuals who self-pay or are on Medicaid.
Newly diagnosed patients with DPNP are most commonly prescribed anticonvulsants. Many patients receive lower than recommended dosages, potentially resulting in poor outcomes. Initial treatments are frequently discontinued, indicating low levels of satisfaction and/or poor tolerability. New therapies with improved efficacy and better tolerability are urgently needed for DPNP.
Meta-analyses of clinical trials found considerable variation in cost-effectiveness of biologic therapies for CD, Ps, and RA. These results may help determine biologic utilization in these chronic diseases.
While proanthocyanidins (PA) are effective in improving collagen's resistance to collagenolytic degradation, the direct incorporation of PA into an adhesive system is detrimental to the light-curing thereof. Conversely, the use of PA as a primer could circumvent this issue, but little is known about the efficacy of PA in stabilizing collagen when applied in a clinically relevant manner. This study investigated the pre-and post-digestion morphology of an acid-etched dentin collagen layer that underwent PA treatment for time periods on a scale of seconds. The null hypothesis, that there is no difference between the PA-treated and untreated control group, had to be rejected, since it was revealed that the untreated control could not survive 1 hr of exogenous collagenase digestion, while the PA-treated collagen could sustain at least 16 hrs of digestion with no perceptible changes in collagen structure. In addition, the stabilizing effect of the gold-standard cross-linker glutaraldehyde at comparable experimental conditions was found to be almost non-existent within the 5, 15, or 30 sec of cross-linking permitted. Therefore, PA have been proven to be extraordinarily efficient in stabilizing demineralized dentin collagen against enzymatic challenges in a clinically relevant setting, likely due to the non-covalent nature of their interaction with collagen molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.