Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets.
Fibrogenesis and hepatocyte degeneration are the main pathological processes in chronic liver diseases. Transforming growth factor-β1 (TGF-β1) is the key profibrotic cytokine in hepatic fibrosis. Bone morphogenetic protein-7 (BMP-7) is a potent antagonist of TGF-β1 and an antifibrotic factor. In this study, we generated a recombinant adeno-associated virus carrying BMP-7 (AAV-BMP-7) and tested its ability to suppress carbon tetrachloride (CCl(4))-induced hepatic fibrosis when orally administered to mice. Our results show that the ectopic expression of BMP-7 in gastrointestinal (GI) mucosa due to the AAV-BMP-7 administration led to the long-term elevation of serum BMP-7 concentrations and resulted in the drastic amelioration of CCl(4)-induced hepatic fibrosis in BALB/c mice. Immunostaining for α-smooth muscle actin (α-SMA) and desmin demonstrated that AAV-BMP-7 inhibited the activation of hepatic stellate cells (HSCs) in the fibrotic mouse liver. Moreover, the ectopic expression of BMP-7 promoted hepatocyte proliferation, as confirmed by an increase in the amount of proliferating cell nuclear antigen (PCNA)-positive hepatocytes in the mice that received AAV-BMP-7. Our results clearly indicate that BMP-7 is capable of inhibiting hepatic fibrosis and promoting hepatocyte regeneration. We suggest that oral AAV-BMP-7 could be developed into a safe, simple, and effective therapy for hepatic fibrosis.
Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.