Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid compared with its parents. The underlying molecular basis for heterosis, particularly for allopolyploids, remains elusive. In this study we analyzed the transcriptomes of Brassica napus parental lines and their F hybrids at three stages of early flower development. Phenotypically, the F hybrids show remarkable heterosis in silique number and grain yield. Transcriptome analysis revealed that various phytohormone (auxin and salicylic acid) response genes are significantly altered in the F hybrids relative to the parental lines. We also found evidence for decreased expression divergence of the homoeologous gene pairs in the allopolyploid F hybrids and suggest that high-parental expression-level dominance plays an important role in heterosis. Small RNA and methylation studies aimed at examining the epigenetic effect of the changes in gene expression level in the F hybrids showed that the majority of the small interfering RNA (siRNA) clusters had a higher expression level in the F hybrids than in the parents, and that there was an increase in genome-wide DNA methylation in the F hybrid. Transposable elements associated with siRNA clusters had a higher level of methylation and a lower expression level in the F hybrid, implying that the non-additively expressed siRNA clusters resulted in lower activity of the transposable elements through DNA methylation in the hybrid. Our data provide insights into the role that changes in gene expression pattern and epigenetic mechanisms contribute to heterosis during early flower development in allopolyploid B. napus.
Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible SH2-containing (CIS) protein, a key negative regulator of interleukin (IL)-15 signaling, with fourth generation 'armored' chimeric antigen receptor (CAR-IL-15) engineering of cord blood (CB) derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell anti-tumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15 secreting armored CAR-NK cells by promoting their metabolic fitness and anti-tumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.
Targeting the αv integrin-TGF-β axis improves natural killer cell function against glioblastoma stem cells Running title-GBM induce NK cell dysfunction via integrin-TGF- axis
Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.
Obesity is usually considered to predispose to atherosclerotic cardiovascular disease (ASCVD) but milder degrees of obesity or overweight may be protective in some elderly populations. We examined the relationships between general and abdominal obesity indices with ASCVD and its risk factors in elderly (aged ≥65 years) Shanghai community residents Among the 3950 participants, 21.5% had ASCVD, 56.2% had body mass index (BMI) ≥24 kg/m2, 50.1% had high waist circumference (WC) and 77.1% had waist-to-height ratio (WHtR) ≥0.50. WHtR increased with age in both men and women whereas WC increased with age only in women and BMI decreased with age only in men. The optimal WHtR cut-off value to predict the risk of ASCVD determined by receiver operating characteristic analysis was WHtR ≥0.53 with a prevalence of 55.8%. Having abdominal obesity was significantly associated with prevalent ASCVD with WHtR ≥0.53 having a higher value for the odds ratio than high WC, whereas high BMI was not associated. All three indices predicted high glucose, triglycerides and hsCRP levels but only the WHtR ≥0.53 showed a significant association with physical activity. Abdominal obesity indices, but not BMI, predicted prevalent ASCVD and its risk factors in this elderly Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.