An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.
The production of
liquid crystalline (LC) polymer particles with
a narrow size distribution on a large scale remains a challenge. Here,
we report the preparation of monodisperse, cross-linked liquid crystalline
particles via precipitation polymerization. This versatile and scalable
method yields polymer particles with a smectic liquid crystal order.
Although the LC monomers are randomly dissolved in solution, the oligomers
self-align and LC order is induced. For the polymerization, a smectic
LC monomer mixture consisting of cross-linkers and benzoic acid hydrogen-bonded
dimers is used. The average diameter of the particles increases at
higher polymerization temperatures and in better solvents, whereas
the monomer and initiator concentration have only minor impact on
the particle size. After deprotonating of the benzoic acid groups,
the particles show rapid absorption of a common cationic dye, methylene
blue. The methylene blue in the particles can be subsequently released
with the addition of Ca2+, while monovalent ions fail to
trigger the release. These results reveal that precipitation polymerization
is an attractive method to prepare functional LC polymer particles
of a narrow size distribution and on a large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.