Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by recurrent visceral pain and altered bowel habits (diarrhea or constipation). However, the molecular and pathological mechanisms are poorly understood. This study found neonatal colorectal distension to induce visceral hypersensitivity and anxiety. The expression of hippocampal circKcnk9, a novel circRNA, was significantly increased in IBS-like rats. Interestingly, CA1 shcircKcnk9 treatment inhibited long-term potentiation (LTP) and alleviated visceral hypersensitivity and anxiety in IBS-like rats, whereas overexpression of CA1 circKcnk9 induced LTP, visceral hypersensitivity, and anxiety in controls. Several experiments indicated that increased CA1 circKcnk9 acted as a miR-124-3p sponge, which resulted in the inhibitory effect of miR-124-3p on gene silencing. There was a negative correlation between circKcnk9 and miR-124-3p expression. As expected, CA1 administration of agomiR-124-3p decreased CA1 LTP, visceral hypersensitivity, and anxiety in the IBS-like rats. In contrast, CA1 treatment with antagomiR-124-3p induced LTP, visceral hypersensitivity, and anxiety in the controls. Furthermore, bioinformatic analysis and experimental data showed that EZH2 is a circKcnk9/miR-124-3p target gene, and increased EZH2 expression was involved in visceral hypersensitivity and anxiety in IBS-like rats by enhancing hippocampal synaptic plasticity. In conclusion, early life stress induces increased expression of circKcnk9 in the CA1 of IBS-like rats. Increased circKcnk9 expression regulates synaptic transmission and enhances LTP, leading to visceral hypersensitivity and anxiety in IBS-like rats. The underlying circKcnk9 signaling pathway is miR124-3p/EZH2. Increased circKcnk9 reinforces its sponging of miR124-3p and strongly suppresses miR124-3p activity, resulting in increased expression of the target gene EZH2. This study provides a new epigenetic mechanism for visceral hypersensitivity and anxiety in IBS-like rats.
Irritable bowel syndrome (IBS) is a prevalent functional disease. However, its molecular and pathological mechanisms are poorly understood. In this study, neonatal colorectal distension induced visceral hypersensitivity and anxiety comorbidity. The expression of hippocampal circKcnk9, a novel circRNA we termed, was increased significantly in IBS-like rats. Interesting, CA1 shcircKcnk9 treatment inhibited LTP and alleviated visceral hypersensitivity and anxiety in IBS-like rats while overexpression of CA1 circKcnk9 induced LTP, visceral hypersensitivity and anxiety in controls. Then, several experiments indicated that increased CA1 circKcnk9 acts as miR-124-3p sponge, which results in the inhibiting effect of miR-124-3p on gene silencing. There was a negative correlation between circKcnk9 and miR-124-3p. As expected, CA1 administration of agomiR-124-3p decreased CA1 LTP, visceral hypersensitivity and anxiety in IBS-like rats. In contrast, CA1 treatment with antagomiR-124-3p induced LTP, visceral hypersensitivity and anxiety in controls. Furthermore, bioinformatics analysis and experimental data showed EZH2 is a target gene of circKcnk9/miR-124-3p and increased EZH2 expression is involved in visceral hypersensitivity and anxiety of IBS-like rats by enhancing hippocampal synaptic plasticity. In conclusion, early life stress induces increased expression of circKcnk9 in the CA1 of IBS-like rats. Increased circKcnk9 ensuing regulates the synaptic transmission and enhances LTP, leading to visceral hypersensitivity and anxiety comorbidity in IBS-like rats. The underlying signaling pathway of circKcnk9 is miR124-3p/EZH2. Increased circKcnk9 reinforces its sponge for miR124-3p, strongly suppresses miR124-3p activity, resulting in increased expression level of target gene EZH2. The study provides a new epigenetic mechanism of visceral hypersensitivity and anxiety comorbidity in IBS-like rats.
Abstract Background: Accumulating evidence shows that N6-methyladenosine (m6A) modulators contribute to the process of chronic pain. However, the exact mechanisms of m6A writers involved in visceral hypersensitivity of IBS remain unclear. This article aimed to reveal a new mechanism for the progression of IBS. Methods: The IBS-like model was established by neonatal colorectal distention (CRD). The relationship between m6A and circKcnk9 was analyzed by bioinformatics, immunofluorescence and RNA fluorescent in situ hybridization (FISH) assays. Visceral hypersensitivity was assessed based on the electromyography (EMG) response of the abdominal external oblique muscle to CRD. In vivo and in vitro studies (including EMG, stereotactic infusion, Western blot and qRT-PCR) were utilized to explore the biological functions of related indicators. The bioinformatics, RIP experiments and RNA pull-down assays were used to explore the potential molecular mechanisms. Results: We identified that neonatal CRD increased the level of the m6A via methyltransferase-like 3 (METTL3) in the hippocampal neurons. Subsequently, knockdown of METTL3 could alleviate visceral hypersensitivity in IBS-like rats. By contrast, overexpression of METTL3 could induce visceral hypersensitivity and activate hippocampal neurons in control rats. Moreover, YTHDC1, the only m6A-associated protein predicted by bioinformatics to bind to circKcnk9, modulated visceral hypersensitivity through regulating the nuclear export of circKcnk9 in an m6A-dependent manner. Notably, FISH data suggested that the increased nuclear staining of circKcnk9 caused by siYTHDC1 could be recovered by overexpression of YTHDC1 wild type (WT) but not YTHDC1 negative control (NC) in PC12 cells. Conclusions: Our findings reveal a new regulatory mechanism in progress of IBS, that is, METTL3 modulates visceral hypersensitivity through regulating the nuclear export of circKcnk9 in YTHDC1-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.