Bone volume inadequacy is an emerging clinical problem impairing the feasibility and longevity of dental implants. Human bone marrow mesenchymal stem cells (HBMSCs) have been widely used in bone remodeling and regeneration. This study examined the effect of long noncoding RNAs (lncRNAs)-H19 on the human amnion-derived mesenchymal stem cells (HAMSCs)-droved osteogenesis in HBMSCs. HAMSCs and HBMSCs were isolated from abandoned amniotic membrane samples and bone marrow. The coculture system was conducted using transwells, and H19 level was measured by quantitative real-time reverse transcriptionpolymerase chain reaction (RT-PCR). The mechanism was further verified. We here discovered that osteogenesis of HBMSCs was induced by HAMSCs, while H19 level in HAMSCs was increased during coculturing. H19 had no significant effect on the proliferative behaviors of HBMSCs, while its overexpression of H19 in HAMSCs led to the upregulated osteogenesis of HBMSCs in vivo and in vitro; whereas its knockdown reversed these effects. Mechanistically, H19 promoted miR-675 expression and contributed to the competitively bounding of miR-675 and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. The results suggested that HAMSCs promote osteogenic differentiation of HBMSCs via H19/miR-675/APC pathway, and supply a potential target for the therapeutic treatment of bone-destructive diseases.
Paper, with advantages of low-cost, easy fabrication and disposal, flexibility and renewability, is a suitable substrate material for various applications. Functionalization and patterning on paper substrates are commonly required in many applications. Although many methods have been developed to achieve this, they typically suffer from some drawbacks such as time-consuming process, specific device dependence, lack of flexibility, low patterning resolution, and so forth. Herein, we present a general and fast method to functionalize paper sheets and create patterns. The whole modification process can be completed in 10 min and can be applied on various types of paper substrates and other natural materials such as natural fabrics. By our method, many commonly used functional groups can be covalently attached and patterned on paper substrates, while the characteristic features of the original paper substrates, for example, color, transparency, and conductivity, can be perfectly retained after modification to allow these properties to be incorporated into the resultant materials. High-resolution patterns can be created on paper by applying a photomask during the modification or controlling the time of modification to precisely control the functionality at any area on the obtained paper substrates. We also show the potential applications of our method in the fabrication of superhydrophobic coatings and biomaterials.
Nickel(II) oxide (NiO) nanocrystals have potential applications in catalysis and photocatalysis and as precursors for nanostructured thin films of NiO used as photocathodes in p-type dye-sensitized solar cells. Previously reported methods for synthesizing NiO nanocrystals typically produce Ni(OH) 2 or Ni as an intermediate phase that is subsequently converted to NiO via calcination or oxidation. Here, we report a reproducible solvothermal method to access colloidal, monodisperse NiO nanocrystals of high optical quality from aminated nickel carboxylate precursor complexes in a single synthetic step at a low reaction temperature (180 °C). The use of a tertiary alcohol, such as tert-butanol or tert-amyl alcohol, as a solvent and the presence of amines and a trace amount of water are all necessary for the formation of NiO. The high optical quality of these nanocrystals combined with the reproducibility and scalability of the synthesis will enable future spectroscopic and reactivity studies of colloidal NiO nanocrystals in the context of their optoelectronic and catalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.