Adopting self-healing, robust, and stretchable materials is a promising method to enable next-generation wearable electronic devices, touch screens, and soft robotics. Both elasticity and self-healing are important qualities for substrate materials as they comprise the majority of device components. However, most autonomous self-healing materials reported to date have poor elastic properties, i.e., they possess only modest mechanical strength and recoverability. Here, a substrate material designed is reported based on a combination of dynamic metal-coordinated bonds (β-diketone-europium interaction) and hydrogen bonds together in a multiphase separated network. Importantly, this material is able to undergo self-healing and exhibits excellent elasticity. The polymer network forms a microphase-separated structure and exhibits a high stress at break (≈1.8 MPa) and high fracture strain (≈900%). Additionally, it is observed that the substrate can achieve up to 98% self-healing efficiency after 48 h at 25 °C, without the need of any external stimuli. A stretchable and self-healable dielectric layer is fabricated with a dual-dynamic bonding polymer system and self-healable conductive layers are created using polymer as a matrix for a silver composite. These materials are employed to prepare capacitive sensors to demonstrate a stretchable and self-healable touch pad.
Figure 6. Dual-ion SPEs with specific design. a) SPE prepared by vertically aligned 2D sheets and its microstructure. Reproduced with permission. [92] Copyright 2019, Wiley. b) Illustration of sandwich-type composite electrolyte (SCE) combined "ceramic-in-polymer" (CIP) electrolyte and "polymer-inceramic"(PIC) electrolyte. Reproduced with permission.
The long application life and stable performance of stretchable electronics have been putting forward requirements for both higher mechanical properties and better self‐healing ability of polymeric substrates. However, for self‐healing materials, simultaneously improving stretchability and robustness is still challenging. Here, by incorporating sliding crosslinker (polyrotaxanes) and hydrogen bonds into a polymer, a highly stretchable and self‐healable elastomer with good mechanical strength is achieved. The elastomer exhibits very high stretchability, such that it can be stretched to 2800% with a fracture strength of 1.05 MPa. Moreover, the elastomer can achieve nearly complete self‐healing (93%) at 55 °C. Next, tensile tests under different temperatures, step extension experiments, and in situ small angle X‐ray scattering confirm that the excellent stretchability is attributed to the combined effects of sliding cyclodextrins along guest chains and hydrogen bonds. Furthermore, a strain sensor by coating the single‐wall carbon nanotubes onto the surface of the elastic substrate is fabricated.
Stretchable electrodes are playing important roles in the measurement of bio‐electrical signals especially in wearable electronic devices. These electrodes usually adopt commercial elastomers such as polydimethylsiloxane or polystyrene‐ethylene‐butylene‐styrene as substrates, which result in poor stability and reliability due to weak interfacial adhesion between electrodes and human skin. Here, dopamine is introduced into the hydrogen bonding based elastomer as pendent groups. The elastomer shows both mechanical strength and adhesion strength at the same time. It exhibits high stress at break (1.9 MPa) and high fracture strain (5100%). Significantly, it exhibits a high adhesive strength (≈62 kPa) and underwater adhesive strength (≈16 kPa) with epithelial tissue. Thus, a stretchable bio‐interfacial electrode is fabricated by spray‐coating silver nanowires on the elastic substrate, which is stretchable, self‐healable, and highly adhesive and suitable for electromyogram measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.