A novel mixed matrix membrane (MMM) was prepared by incorporating polydopamine-coated metal organic framework (MOF) crystals of CAU-1-NH2 into a PMMA (polymethylmethacrylate) matrix. The MMM possesses the advantages of high O2 permeability, high capability of carbon dioxide capture, and excellent hydrophobic behavior. The MMM was assembled in the Li-air batteries which displayed promising electrochemical performance in the real ambient air with 30% relative humidity.
Catalysts of oxygen reduction reaction (ORR)play key roles in renewable energy technologies such as metal-air batteries and fuel cells. Despite tremendous efforts, highly active catalysts with low cost remain elusive. This work used metal-organic frameworks to synthesize non-precious bimetallic carbon nanocomposites as efficient ORR catalysts. Although carbon-based Cu and Ni are good candidates, the hybrid nanocomposites take advantage of both metals to improve catalytic activity. The resulting molar ratio of Cu/Ni in the nanocomposites can be finely controlled by tuning the recipe of the precursors. Nanocomposites with a series of molar ratios were produced, and they exhibited much better ORR catalytic performance than their monometallic counterparts in terms of limited current density, onset potential and half-wave potential. In addition, their extraordinary stability in alkaline is superior to that of commercially-available Pt-based materials, which adds to the appeal of the bimetallic carbon nanocomposites as ORR catalysts. Their improved performance can be attributed to the synergetic effects of Cu and Ni, and the enhancement of the carbon matrix.
Sharp branches of gold nanostars are critical in tuning the plasmonic properties of these nanostars and maximizing the activities in surface-enhanced Raman scattering (SERS). The interaction between the capping ligands and nanostars plays an essential role in determining the morphology of the branches on the gold nanostars. In this Article, we show that 4-mercapto benzoic acid can effectively control the morphology of branched gold nanostars, and these gold nanostars can be used for the colloidal SERS detection of probe molecules at a nanomolar concentration. We also find that the sharp branches on gold nanostars will provide extra SERS activities as compared to the ones with a rough surface. Using the method of principal component analysis, we can easily distinguish the addition of 4-mercapto pyridine molecules at a concentration of 2 nM. Our work indicated the promising applications of these gold nanostars in colloidal SERS studies for various ultrasensitive chemical analyses.
Surface-enhanced Raman scattering (SERS) recently joins other optical methods in making novel anticounterfeiting materials due the fact that abundant molecular fingerprint in the Raman spectra can be less susceptible to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.