The experiment of rock-like material plays an important role in the simulation of engineering fractured rock mass. To further understand the influence of raw materials on rock-like materials, this paper carried out the indoor mechanical properties test and the micro-pore structure detection combining NMR and SEM. The effects of micron-silica fume (SF) on microporous structure parameters and macroscopic mechanical properties under different conditions of water–cement ratio (WCR) and sand–cement ratio (SCR) were discussed. The intrinsic relationship between parameters of different scales was analyzed. The experimental results showed that the porosity parameters of different radii gradually decreased with the increase in SF. The reduction rate of macroporous porosity was the greatest, and the decreasing rate of microporous porosity was the smallest. With the increase in SF, the microscopic characteristics of the internal surface changed from more pores, complex morphological distribution, rough surface to fewer pores, regular morphological distribution and flat and uniform surface. The box fractal dimension also showed a decreasing trend. Micro-pore structure makes a valuable contribution to the influence of SF on mechanical properties. The compressive strength and tensile strength increased with the increase in SF. The box fractal dimension and porosity of different radii were negatively correlated with mechanical strength. Different porosity parameters conformed to a good exponential relationship with mechanical properties. The research results can provide reference value and research space for subsequent rock-like material research.
To explore the effects of water-cement ratio and sand-cement ratio on micro-pore structure characteristics and macroscopic mechanical properties and thus improve the understanding of rock-like materials, the mechanical test and detection of micro-pore structure combining NMR and SEM were carried out. The effects of WCR and SCR on different porosity parameters and mechanical properties were discussed. The correlation and internal relationship between mechanical properties and parameters of different porosities and fractal dimensions were analyzed. Experimental results showed that the different porosity parameters and fractal dimensions increased with the increase in WCR. 1.0 (SCR) was the turning point of different porosity parameters and fractal dimensions. When the SCR was less than 1.0, the porosity parameters and fractal dimension gradually decreased, while when the SCR was greater than 1.0, the porosity parameters and fractal dimension gradually increased. Microscopic porosity parameters and fractal dimension played an important role in the influence of experimental factors on mechanical properties. Different porosity parameters and fractal dimensions were negatively correlated with mechanical properties. Compressive strength and different porosity parameters conformed to a good exponential relationship, while the fitting relationship between tensile strength and mechanical properties was not obvious. This study can provide a reference for the follow-up study of rock-like materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.