Switched-beam systems offer a promising solution for realizing multi-user communications at millimeter wave (mmWave) frequencies. A low-complexity beam allocation (LBA) algorithm has been proposed to solve the challenging problem of maximizing sum data-rates. However, there are practical limitations in mmWave systems, such as restrictions in the number of available radio frequency transceiver chains at the base station, sensitivity to sidelobe interference and the beam generation techniques. In this paper, using generalized beam-patterns, we present the maximum sum data-rates achievable in switchedbeam mmWave systems compared with fixed-beam systems by applying LBA. Then, the impact on maximum sum data rates of actual beam-patterns, obtained from a practical mmWave lens antenna, which have higher and non-uniform sidelobes compared with the theoretical beams, is assessed. Finally, as a guide for practical wireless system design, benchmarks are established for relative sidelobe levels that provide acceptable sum data-rate performance when considering generalized beam patterns.INDEX TERMS Beamforming, beam-allocation, fixed-beam, millimeter wave, mobile communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.