Dissolution of cellulose with ionic liquids allows the comprehensive utilization of cellulose by combining two major green chemistry principles: using environmentally preferable solvents and bio-renewable feed-stocks. In this paper, the dissolution of cellulose with ionic liquids and its application were reviewed. Cellulose can be dissolved, without derivation, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Microwave heating significantly accelerates the dissolution process. Cellulose can be easily regenerated from its ionic liquid solutions by addition of water, ethanol or acetone. After its regeneration, the ionic liquids can be recovered and reused. Fractionation of lignocellulosic materials and preparation of cellulose derivatives and composites are two of its typical applications. Although some basic studies, such as economical syntheses of ionic liquids and studies of ionic liquid toxicology, are still much needed, commercialization of these processes has made great progress in recent years.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
This article reviews the state-of-the-art in the hydroprocessing of microalgae-based biofuels, catalyst development, and the effect of process parameters on hydrotreated algal fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.