Pathological hallmarks of Alzheimer’s disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP–AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS–IFN–MEF2C axis to improve resilience against AD-related pathological insults.
Understanding disease biology at a cellular level from disease specific tissues is imperative for effective drug development for complex neurodegenerative diseases. We profiled 87,086 nuclei from putamen tissue of healthy controls, Parkinson's Disease (PD), and Multiple System Atrophy (MSA) subjects to construct a comprehensive single cell atlas. Although both PD and MSA are manifestations of alpha-synuclein protein aggregation, we observed that both the diseases have distinct cell-type specific changes. We see a possible expansion and activation of microglia and astrocytes in PD compared to MSA and controls. Contrary to PD microglia, we found absence of upregulated unfolded protein response in MSA microglia compared to controls. Differentially expressed genes in major cell types are enriched for genes associated with PD-GWAS loci. We found altered expression of major neurodegeneration associated genes, SNCA, MAPT, LRRK2, and APP, at cell-type resolution. We also identified disease associated gene modules using a network biology approach. Overall, this study creates an interactive atlas from synucleinopathies and provides major cell-type specific disease insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.