Background: Yinqin oral liquid (YOL) has curative effect for upper respiratory tract infections, especially for chronic pharyngitis (CP). Since the traditional Chinese herbal formulae are complicated, the pharmacological mechanism of YOL remains unclear. The aim of this work was to explore the active ingredients and mechanisms of YOL against CP. Methods: First, the profile of putative target of YOL was predicted based on structural and functional similarities of all available YOL components, which were obtained from the Drug Bank database, to the known drugs using TCMSP. The chemical constituents and targets of honeysuckle, scutellaria, bupleurum and cicada were searched by TCMSP, CTD, GeneCards and other databases were used to query the CP-related genes, which were searched by UniProt database. Thereafter, the interactions network between compounds and overlapping genes was constructed, visualized, and analyzed by Cytoscape software. Finally, pathway enrichment analysis of overlapping genes was carried out on Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Results:The pathway enrichment analysis showed 55 compounds and 113 corresponding targets in the compound-target network, and the key targets involved PTGS1, ESR2, GSK3β, NCOA2, ESR1. The PPI core network contained 30 proteins, including VEGFA, IL6, ESR1, RELA and HIF1A. A total of 148 GO items were obtained (p<0.05), 102 entries on biological process (BP), 34 entries on biological process (BP) and 12 entries on cell composition (CC) were included. A total of 46 signaling pathways were obtained by KEGG pathway enrichment screening (p<0.05), involving cancer, PI3K-AKT, hepatitis, proteoglycans, p53, HIF-1 signaling pathways. Conclusion: These results collectively indicate YOL (including the main ingredients luteolin and baicalein) as a highly effective therapeutic agent for anti-inflammation, through the NF-kB pathway.
Background: The world's first Diabetes Medications (Insulin) was marketed in October 1923. Some studies suggested the association of diabetes medications with Bullous Pemphigoid (BP), especially the Dipeptidyl Peptidase 4 (DPP-4) inhibitors. The study aims to detect an association between diabetes medications (focusing on DPP-4 inhibitors) and bullous pemphigoid based on FDA Adverse Event Reporting System (FAERS). Methods: All spontaneous reports of diabetes medications inhibitors-related BP recorded in the FAERS between March 2004 and August 2020 were included in the present study. Disproportionality analysis was performed to find the signal between diabetes medications and BP. The Chi-Squared with Yates' correction (χ 2 Yates), proportional reporting ratio (PRR) and the lower limit of the 95% confidence interval of the Reporting Odds Ratio (ROR025) were calculated as a measure. A signal was detected when ROR025 > 1, PRR > 2, χ 2 Yates > 4 and at least 3 cases. Results: There were 3770 reports for BP in FAERS. The strongest signal for diabetes medications-BP association were DDP-4 inhibitors (
Objective. Exploration of the underlying molecular mechanism of Jinchan Oral Liquid (JOL) in treating children with the respiratory syncytial virus (RSV) pneumonia to provide new evidence for the clinical application. Methods. The active components and target genes of JOL were screened by the TCMSP database. The targets of RSV pneumonia were obtained from the GeneCards, OMIM, DrugBank, and PharmGKB database. Then, we constructed the active component-target network and screened the core genes. The overlaps were screened for PPI network analysis, GO analysis, and KEGG analysis. Finally, result validation was performed by molecular docking. Results. According to the screening criteria of the ADME, 74 active compounds of JOL were obtained; after removing redundant targets, we selected 180 potential targets. By screening the online database, 893 RSV pneumonia-related targets were obtained. A total of 82 overlapping genes were chosen by looking for the intersection. The STRING online database was used to acquire PPI relationships, and 16 core genes were obtained. GO and KEGG analyses showed that the main pathways of JOL in treating RSV pneumonia include TNF signaling pathway and IL17 signaling pathway. The molecular docking results showed that the active compounds of JOL had a good affinity with the core genes. Conclusion. In this study, we preliminarily discussed the main active ingredients, related targets, and pathways of JOL and predicted the pharmacodynamic basis and the potential therapeutic mechanisms of RSV pneumonia. In summary, the network pharmacology strategy may be helpful for the discovery of multitarget drugs against complex diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.