Silibinin is a natural flavonoid antioxidant with anti-hepatotoxic properties and pleiotropic anticancer capabilities. We tested the hypothesis that silibinin inhibits cellular invasiveness by down-regulating the focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK)-dependent c-Jun/activator protein-1 (AP-1) induction, which leads to inhibition of urokinase-type plasminogen activator (u-PA) and matrix metalloproteinase-2 (MMP-2) expressions in human osteosarcoma MG-63 cells. We found that silibinin decreased cell adhesion and invasiveness, as well as inhibited u-PA and MMP-2 expressions. Silibinin reduced ERK 1/2 phosphorylation, but had no effects on the phosphorylation of c-Jun N-terminal kinases (JNKs) 1/2, p38 and Akt. Silibinin suppressed AP-1-binding activity and c-Jun levels and its phosphorylation without changes of c-Fos and Ets-1 levels. Silibinin also inhibited interleukin-6-induced ERK 1/2 and c-Jun phosphorylation, and cell invasiveness. Thus, silibinin may possess an anti-metastatic activity in MG-63 cells.
Cancer metastasis, involving multiple processes and various cytophysiological changes, is a primary cause of cancer death and may complicate the clinical management, even lead to death. Silibinin is a flavonoid antioxidant and wildly used for its antihepatotoxic properties and recent studies have revealed pleiotropic anticancer and antiproliferative capabilities of silibinin. In this study, we first observed that silibinin exerted a dose- and time-dependent inhibitory effect on the invasion and motility, but hardly on the adhesion, of highly metastatic A549 cells in the absence of cytotoxicity. To look at the precise involvement of silibinin in cancer metastasis, A549 cells were treated with silibinin at various concentrations, up to 100 microM, for a defined period and then subjected to gelatin zymography, casein zymography and Western blot to investigate the impacts of silibinin on metalloproteinase-2 (MMP-2), urokinase plasminogen activator (u-PA), and tissue inhibitor of metalloproteinase-2 (TIMP-2), respectively. The results showed that a silibinin treatment may decrease the expressions of MMP-2 and u-PA in a concentration- and time-dependent manner and enhance the expression of TIMP-2. Further analysis with semi-quantitative RT-PCR showed that silibinin may regulate the expressions of MMP-2 and u-PA on the transcriptional level while on the translational or post-translational level for TIMP-2.
Berberine is the major constituent of Coptidis Rhizoma with multiple pharmacological activities, including anti-inflammation, promotion of apoptosis and anticancer potential effect. Mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS) may contribute to the causal relationship between tumorigenesis and pro-apoptotic function. Berberine is studied for the mechanism of its action in apoptotic pathway in human colonic carcinoma cell. Treatment of SW620 cells with 50 microM berberine resulted in activation of the caspase 3 and caspase 8, cleavage of poly ADP-ribose polymerase (PARP) and the release of cytochrome c; whereas, the expression of BID and anti-apoptosis factor c-IAP1, Bcl-2, and Bcl-(XL) were decreased markedly. Berberine-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK and p38 MAPK, as well as generation of the ROS. Furthermore, the induction of apoptosis was alleviated by inhibitors specific for JNK and p38. In addition, there was an increase in the cellular levels of phospho-c-Jun, FasL and t-BID in the berberine-induced apoptosis via the activation of JNK and p38 signaling modules. NAC administration, a scavenger of ROS, reversed berberine-induced apoptosis effects via inhibition of JNK, p38 and c-jun activation, and FasL and t-BID expression. These results leads us to speculate that berberine may play an apoptotic cascade in SW620 cells by activation of the JNK/p38 pathway and induction of ROS production, providing a new mechanism for berberine-induced cell death in human colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.